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ABSTRACT 

The nonlinear interaction of zero sound with the order 
parameter collective modes in superfluid SHe-B is considered within 
perturbation theory in the amplitude of the sound field. Selection 
rules for nonlinear excitation of the order parameter modes are 
determined by the approximate particle-hole symmetry of the SHe 
Fermi liquid. A diagrammatic algorithm, based on the quasiclassical 
theory of superfluid SHe, is used to calculate nonlinear coupling 
constants. These nonlinearities are sufficiently large that it 
should be possible to observe two phonon absorption and stimulated 
Raman scattering of zero sound by the real squashing (J = 2 + ) mode. 
Finally, we discuss the possibility of using these nonlinearities to 
produce zero sound with 'squeezed' noise. 

INTRODUCTION 

The order parameter collective modes of superfluid SHe have 
been studied extensively with zero sound. Most of these studies 
have been devoted to the lin@gr response of the superfluid. I 
Interesting phenomena should @%so~ be observable in the nonlinear 
acoustic response. 

The order parameter for the superfluid phases of SHe is the 
Cooper pair amplitude <~> which for a p-wave (~ = i), spin 
triplet (s = i) state can be written in terms of a 3x3 complex 
matrix Aij. 2 The order parameter collective modes in the B phase are 
oscillations A~ about is equilibrium value A(T)6i~ (where A(T) is 

~J J 3 
the temperature dependent energy gap), and can be classified by the 
quantum numbers J~ and M where. J = 0,1,2 is the total angular 
momentum, M = {-J,''',O,-''J} is_~the magnetic quantum number, and 
= +, - is the 'parity' under particle-hole symmetry (discussed 
below) for the real and imaginary parts of the order parameter, 
respectively. 

The J - 2 + and J = 2- modes, which are also known as the real 
and imaginary squashing modes, respectively, are of particular 
interest because they couple to zero sound. These modes lie below 
the pair breaking edge 2A(T) (~2+=I'IA(T) and ~2-=1.5~(T)) and are 
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weakly damped by quasiparticle collisions. Consequently, the 
J = 2 + , 2" modes result in sharp features in the zero sound 
attenuation, phase velocity and group velocity whenever the 
frequency and wave vector of sound is equal to that of one of the 
collective modes. In a magnetic field, H, a five-fold Zeeman 
splitting of the J = 2 + mode is observed, 4 the splitting becomes 
nonlinear as a function of H for large magnetic fields 5 as a result 
of gap distortion and level repulsion, s Recently, the Zeeman 
splitting of the J = 2- modes has been observed in the group 
velocity spectrum. ? In general, the acoustic spectroscopy of 3He-B 
involves phenomena similar to those seen in the optical spectroscopy 
of atoms, molecules and solids. Here we show that it should also be 
possible to observe nonlinear acoustic processes in SHe-B analogous 
to the well known nonlinear optical effects of two photon absorption 
and stimulated Raman scattering. Both of these processes in 3He 
involve quanta of the real squashing mode (real squashons 
hereafter). The first process is the excitation of a real squashon 
by two zero soun d phono~s. This occurs if the frequencies ~i and ~2 
and wavevectors ql and q2 of the phonons satisfy the conditions 

~i ± ~2 = ~M 
~ ~ (i) 

ql ± q2 = qM 

with positive signs, where ~M and qM are the frequency and 
wavevector respectively of the real squashon. The second process is 
the decay of a zero sound phonon into a real squashon and a second 
zero sound phonon, which occurs if eq. (I) is satisfied with the 
negative sign. Whether or not ~hese processes are observable 
depends on the answers to two questions. Are the processes allowed 
by the selection rules that are implied by the symmetries of 3He? 
And, if so, what acoustic energy density is needed to detect them? 

Liquid SHe at low temperatures has an approximate symmetry 
under the interchange of quasiparticle and quasihole states near 
the Fermi surface. An important selection rule is imposed by 
exact particle-hole symmetry which is represented by a unitary 
operator C that maps quasiparticle states just above the Fermi 
surface into quasihole states just below the Fermi surface (and 
vice-versa).9, z° Particle-hole symmetry determines the selection 
rules for the coupling of zero-sound to the order parameter 
collective modes because the real (imaginary) components of the 
order parameter are even (odd) under C, whereas the density 
fluctuations are odd under C. 9 Thus, with exact particle-hole 
symmetry the J = 2 + modes do not couple linearly to sound. 
However, particle-hole symmetry is weakly broken in SHe because 
the density of states just above and just below the Fermi 
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surface differ slightly. Consequently, there is a weak linear 
coupling between the J - 2 + modes and sound. In the linear 
response limit the dynamical equations for the J - 2 + modes are 

M ~ 6 
i(~) [(~+iF) 2 - ~M+(q) 2] D+(~,q) = ~ ~H 6n(~,q), (2) 

M 
where D+(w,q) is the amplitude of the mode with magnetic quantum 

i 
number M, ~ is the lifetime of the mode due to quasiparticle 

collisions, i(~) is the Tsuneto function and 6n(~,~) is the density 
fluctuation. The coupling constant ~M is small, of order ~ = 
N'(EF)A/N(EF) , where N(EF) and N'(EF) are the density of states and 
its' slope at the Fermi surface. II 

The propagation of sound in superfluid 3He is described by a 
wave equation 

a . 2 2 : 2c~V26H -- ClV ] 6n 
8t 2 

(3) 

where 6H(R,t) is related to the stress tensor of the superfluid, and 
c I is the hydrodynamic sound velocity. Equation (3) is a 
consequence of the mass and momentum conservation laws. It is 
important to note that although this equation is linear in 6n and 6H 
it describes nonlinear sound propagation because the longitudinal 
stress 6H is in general a nonlinear functional of the density 
fluctuation and, in general, the amplitudes of the collective modes 
of the system which couple to zero-sound. The relationship between 
the fluctuating stress 6H and the density fluctuation 6n must be 
obtained from a more microscopic theory than hydrodynamics. Under 
certain conditions the constitutive relation is of the form 

6H = X(1)6n + X(2)(6n) 2 + X(3)(6n) 3 + ' ' '  (4) 

In the linear response limit the frequency dependent attenuation 
~(w) and the phase velocity c(w) of sound are given by 

C(~)-C 1 
-qIm X (1) = , Re X (I) . (5) 

Cl 

For exact particle-hole symmetry the second order susceptibility 
X (2) vanishes. Analogues between the above situation and that in 
optics 8 have been pointed out recently, z2 
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Although the J = 2 + modes can only be excited by a single zero 
sound phonon via the small intrinsic particle-hole asymmetry in SHe, 
the excitation of the J m 2 + mode by two phonon processes is not 
forbidden by particle-hole symmetry selection rules. Thus, at 
higher sound amplitudes the right-hand side of eq. (2) contains a 
driving term which is second order in the density; and the stress 
tensor has a term which is hilinear in ~n and the amplitude D M for 
the J = 2 + mode. These nonlinear couplings have been calculated from 
microscopic theory. I~ The results are 

6~(~) i --~ f dv AM(w,v,w - v) 6n(v) D M (~-v), (6) 

M 

(i + F8)2~ 
X 

f dv AM(v-w,v,-~) * 6n(v) 6n(~-v) ,  (7) 

where A M is a dimensionless function of order one. These are 
the central equations describing the interaction of the J = 2 + 
modes with two zero sound waves. 

TWO PHONON PROCESSES 

Equations (2) and (3) are now applied to the nonlinear 
interaction of two zero sound waves with the J = 2 + mode. The 
density fluctuation is written in the form 

6n(R,t) = Re[NI(R,t) + N2(R,t) ] (8) 

where Nj(R,t) = Nj(R,t)ei[~jt-qj "R], j ~ 1,2 and it is assumed that 

the wave amplitudes Nj(~,t) vary slowly on the time scale of the 

mode l i f e t i m e  1/F. In  t h i s  q u a s i - s t e a d y - s t a t e  approximat ion  

eq. (6) can be solved for D (R,t). It is straightforward to 

show t h a t  the J = 2 + mode ampli tudes  con ta in s  terms o s c i l l a t i n g  wi th  
frequencies, 0, 2~i, 2~2, ~i + ~2' and ~i-~2. If these solutions, 

t o g e t h e r  with eq. (8) ,  are s u b s t i t u t e d  in  eq. (6) i t  i s  found t h a t  

6H(R,t) contains terms oscillating with frequencies ~I' ~2' 3~i' 

3~2, 2~i±~2, and 2~2±~ I. 
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The term with frequency ~i is written as 

6nl(R,t) 
NI " [X(3)(~ 1 -~2,~I+~2 ) + X (3) , (~I,~2,~I-~2)]IN212, 

where the nonlinear susceptibility is 

(9) 

6 ~M IAM(~'v'~-v) 12 X(3) (~,v,~-v) (IO) 
542(1 + F~)3 ~(~.u)[(~.u+iF)2 . ~2 ] 

M+ 

If the wave with frequency ~2 is of much higher intensity than the 
wave with frequency ~i, then the intensity IN212 can be treated as a 
constant. The attenuation and shift in phase velocity of the sound 
wave with frequency ~I, due to the nonlinear interaction with the 
sound wave with frequency ~2 and the J = 2 + collective modes is then 
calculated from eqs. (3), (9) and (I0). Well defined features in 
the spectrum occur whenever one of the resonance conditions 
~I±~2 - ~M+ is satisfied. These resonance features correspond to 
two phonon absorption (+) and stimulated Raman scattering (-) of 
phonons by the J = 2 + modes. 

Figures I (a) and (b) show the change in the phase velocity in 
a zero sound wave of frequency ~i due to its linear and nonlinear 
interaction with the J ~ 2 + modes in the presence of a second wave 
of high intensity and frequency ~2" The features on the left 
(T+ = 0.62Tc) are due to two-phonon absorption by the J = 2 + mode 
and occur at a temperature such that ~i+~2 - Ks A(T+). The 
features on the right (T. = 0.76Tc) are due to stimulated Raman 
scattering of phonons by the J = 2 + mode and occur at a temperature 
such that I~i- ~21 - a~Ts ~(T+). The large central feature in 
Figure i (a) is due to the linear coupling of the sound to the 
J - 2 + mode as a result of particle-hole asymmetry and occurs at a 
temperature T O such that ~i - aj~s a(To). The linear resonance is 
not shown in Fig. I (b) because it occurs at a temperature greater 
than 0.ST c. Amplification of the low-frequency sound wave ~ 
possible at the resonance T_ for the same parameters as Fig. l(b). 
An amplification occurs as the high-frequency phonons decay into 
real squashons and low frequency phonons. In order to reduce 
heating effects in the experimental cell, it may be desirable to use 
a smaller sound energy density than the value U/U c = 0.2 used in 
Fig. I (a) and (b). Although a smaller value of U/U c reduces the 
size of the nonlinear features they should still be observable since 
changes in the phase velocity of order one part in 106 are 
presumably detectable. 
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Figure I. The predicted temperature dependence at zero pressure of 
v2+(T)/Cl, where v2+ is the contribution of the J = 2 + 
mode to the phase velocity of a zero sound wave of 
frequency ~i in the presence of a parallel wave of 
frequency ~2 and energy density 0.2U c. In (a) ~i=35.4 MHz 
and ~2=2.87 MHz and in (b) ~i-2.87 MHz and ~2=35.4 MHz 
The features at T/T c - 0.62 and 0.76 in both graphs 
are the nonlinear resonances. 
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SQUEEZING OF ACOUSTIC NOISE 

The density oscillation produced by a sound mode of frequency 
can be written in the form 

6n = PI cos ~t + P2 sin ~t (ll) 

where for simplicity the spatial dependence is omitted. In general, 
there are fluctuations in the amplitudes PI and P2 caused by noise 
of various sources. For example, there is noise in the electrical 
signal that drives the sound transducer, as well as thermal 
fluctuations of the density. Generally, the noise will be randomly 
distributed in phase and the fluctuations AP I and AP 2 in two 
quadratures will be equal. 

We now consider the possibility of producing "squeezed" sound 
which has unequal noise in the two quadratures. In analogy with 

13 
nonlinear optics this can be done by four-wave mixing, which makes 
use of the large nonlinear susceptibility X (3) in 3He-B. Two high 
intensity counter-propagating waves (referred to as pump waves) 
interact with a second pair of counter propagating waves (signal 
waves) in a cavity oriented at an oblique angle to the pump waves. 
The four waves usually have the same frequency. It can be shown 
that the fluctuations AP I and AP 2 in the quadratures of the signal 
waves leaving the cavity are related to the initial fluctuations 
AP o in the signal waves entering the cavity by 

i e2 s sin2 ~] (Apl) 2 - (Apo)2[e -2s cos 2 78 + 

= i e2 s (~P2) 2 (Apo)2[e-2S sin2 ~8 + cos2 ~] 

(12) 

where se i9 s X (3) A 2 L, A is the amplitude of the pump waves, and L 
is the interaction length for the cavity. In order to observe 
significant squeezing of the noise it is desirable to tune 8 = 0 or 

which implies that the llmx(3)l << IRe X(3) l. In addition the 
squeezing parameter s should be of order unity or larger. This 
requires a large nonlinear, susceptibility, large pump-wave energy 
densities and a long interaction length. For zero sound in SHe-B 
with frequency about half the J = 2 + mode frequency IX(3)l is 
sufficiently large that values of s-i are possible for interaction 
lengths of order centimeters and pump wave energy densities U 
several orders of magnitude smaller than the superfluid condensation 
energy density U c. In addition the frequency is far enough from 
resonance that llmx(3)l << IRex(3) I. 
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The squeezing of noise can be measured by homodyne detection: 
the signal wave is mixed with another sound wave (known as the local 
oscillator) of much higher intensity and with a phase 4 relative to 
the signal wave. The noise power of this mixed wave is then 
measured. Suppose that PA is the noise power in the absence of both 
signal and pump waves and Po+PA is the noise power measured in the 
absence of the pump wave. Then Ps is given by 

Ps = PA + Po [l-~+~(e-2Ssin2(~-~)+e2Sc°s2(~-~))] (13)  

where ~ = I for classical noise. Thus, as the local oscillator 
phase 4 is varied squeezing results in oscillations in the noise 
power, and so the squeezing of classical acoustic noise should be 
observable. 

Even if the thermal sources of noise mentioned above can be 
eliminated there will be noise due to quantum fluctuations in the 
superfluid. It can be shown that the variances API and AP 2 must 
satisfy the uncertainty principle, 

h~ 
APIAP 2 ~ 2n - -  (14) 

Vmco2 

where n is the equilibrium density of the superfluid, m is the mass 
of the 3He atom, c o is the velocity of sound and V the volume of the 
sound mode. It is an interesting question as to whether it would be 
possible to reduce the classical noise in superfluid 3He-B to the 
extent that the equality in (14) is satisfied. In optical systems 
it is possible to generate coherent states of light using stable 
lasers in which the noise is dominated by quantum fluctuations. 
Moreover, it has been possible to use four-wave mixing and homodyne 
detection to produce squeezed quantum states of light. Is The noise 
power that is measured is similar to (13) with ~ equal to the 
quantum efficiency of the photodetector, i.e. the ratio of the 
number of incident photons to the number of photons detected. In 
optical experiments ~ is usually greater than 0.5 so the 
oscillations in Ps with 4 are large enough to be observed. Even if 
it is possible to produce coherent phonon states, squeezed quantum 
states of sound will not be observable unless high efficiency phonon 
detectors are developed. The quartz transducers commonly used have 
a large acoustic impedance mismatch with superfluid 3He, resulting 
in a low value for 7- 
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