Influence of strong-coupling corrections on the equilibrium phase for ${ }^{3} P_{2}$ superfluid neutron-star matter

V. Z. Vulovic* and J. A. Sauls
Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08544

(Received 9 May 1983)

Abstract

We calculate strong-coupling corrections to the ${ }^{3} P_{2}$ neutron-star-matter Ginzburg-Landau functional including spin-orbit and central forces. Based on a two-parameter approximation for the spin-orbit scattering amplitude and typical estimates for the neutron-matter Landau parameters we conclude that the most likely equilibrium phase of ${ }^{3} P_{2}$ neutron matter is described by a unitary order parameter. Better calculations of neutron-matter parameters, particularly the spin-orbit scattering amplitude, would allow a stronger conclusion.

INTRODUCTION AND SUMMARY

Recent theoretical work on superfluidity in neutron stars has concentrated on the structure and hydrodynamics of the rotating ${ }^{3} P_{2}$ superfluid interior. ${ }^{1,2}$ The novel properties of the ${ }^{3} P_{2}$ neutron superfluid that distinguish it from the more conventional s-wave superfluid are a consequence of spontaneously broken spin-orbit symmetry. In particular, the structure of vortices in the ${ }^{3} P_{2}$ neutron superfluid, which play a central role in theories of the rotational dynamics of pulsars, depends implicitly on the equilibrium-phase order parameter, or condensate amplitude for the ${ }^{3} P_{2}$ neutron pairs. ${ }^{3}$ The problem of determining the equilibrium-state order parameter ${ }^{3} P_{2}$ pairing separates into two parts. The first part is to determine the possible phases by minimizing the general fourth-order Ginzburg-Landau (GL) free-energy functional over the space of ${ }^{3} P_{2}$ order parameters for arbitrary values of the parameters that define the functional. This problem has been solved by Sauls and Serene ${ }^{4}$ and Mermin. ${ }^{5}$ The second part of the problem, which is the subject of this paper, is to calculate the parameters which define the GL functional from a microscopic theory and thereby determine the equilibrium phase. The calculation presented below extends the earlier work of Ref. 4 to include spinorbit scattering in the strong-coupling corrections to BCS theory for ${ }^{3} P_{2}$ pairing. Our conclusion that the equilibrium phase of ${ }^{\frac{2}{3}} P_{2}$ neutron matter is described by a unitary order parameter agrees with the tentative conclusion of Sauls and Serene; we emphasize that this conclusion is significantly strengthened by our calculations which include spin-orbit scattering. In the Introduction we briefly review the GL theory of ${ }^{3} P_{2}$ pairing and pay particular attention to the relevance of corrections to the BCS theory, discuss the importance of the spin-orbit forces to the properties of neutron matter at high density, and summarize our results for the equilibrium phase diagram for ${ }^{3} P_{2}$ neutron matter. The rest of the paper summarizes the calculation of strong-coupling corrections with spin-orbit scattering for ${ }^{3} P_{2}$ pairing.

The GL theory of ${ }^{3} P_{2}$ pairing is discussed by several authors; for our purpose we use the notation of Sauls and Serene. ${ }^{4}$ The order parameter $A_{\mu \nu}$ for ${ }^{3} P_{2}$ pairing is a three-dimensional complex matrix which is both traceless
and symmetric. The equilibrium order parameter is determined by minimizing the homogeneous mean-field freeenergy functional over the space of ${ }^{3} P_{2}$ order parameters. This functional, expanded through fourth-order in $A_{\mu \nu}$, is

$$
\begin{align*}
\Delta \Omega[A]= & \frac{1}{3} \alpha \operatorname{Tr} A A^{*}+\bar{\beta}_{1}\left|\operatorname{Tr} A^{2}\right|^{2}+\bar{\beta}_{2}\left(\operatorname{Tr} A A^{*}\right)^{2} \\
& +\bar{\beta}_{3} \operatorname{Tr} A^{2} A^{* 2} . \tag{1.1}
\end{align*}
$$

The important result is that all the minima of this functional can be found for any set of parameters $\left\{\bar{\beta}_{1}\right\}$. There are three classes of minima corresponding to the three labeled regions of the phase diagram (Fig. 1). In the region

FIG. 1: The phase diagram for ${ }^{3} P_{2}$ Ginzburg-Landau functional. The BCS theory predicts $p_{1}=0$ and $p_{3}=-1$ corresponding to a unitary order parameter. Strong-coupling corrections give $p_{1}<0$ and a phase point between the half-lines $A^{\text {so }}$ and $B^{\text {so }}$ (with slopes of -1.6 and 4.0) in the limit when spinorbit forces dominate, or between the half-lines $A^{\text {tot }}$ and $B^{\text {tot }}$ (with slopes of -1.4 and 11), when we use Landau parameter values of Bäckman et al. ${ }^{11}$ The phase point moves away from nonunitary regions 1 and 2 .

1 the superfluid state (referred to as "type 1" hereafter) is described by

$$
\begin{equation*}
A_{\mu v}^{(1)} \propto\left(u_{\mu}+i v_{\mu}\right)\left(u_{v}+i v_{v}\right) \tag{1.2}
\end{equation*}
$$

with $\widehat{u} \cdot \hat{v}=0$, corresponding to a condensate of neutron pairs in a pure $M_{J}=+2$ state along $\hat{w}=\widehat{u} \times \widehat{v}$. The type- 1 phase is a ferromagnetic superfluid with magnetization

$$
M \sim\left[\frac{\gamma_{n} \hbar}{2}\right] \frac{k_{F}^{3}}{3 \pi^{2}}\left[\frac{\Delta}{E_{F}}\right]^{2}
$$

which is of the same order of magnitude as the magnetic field in the interior of neutron stars. The type-1 phase would also have interesting rotational dynamics because the order parameter allows for vortex structures without singular cores.

The type-2 phase has an order parameter

$$
\begin{equation*}
A_{\mu \nu}^{(2)} \propto u_{\mu} u_{\nu}+e^{i 2 \pi / 3} v_{\mu} v_{v}+e^{-i 2 \pi / 3} w_{\mu} w_{v} \tag{1.3}
\end{equation*}
$$

where $(\hat{u}, \hat{v}, \hat{w})$ is an orthonormal triad. There is no net spin polarization in this phase even though time-reversal symmetry is broken by the type-2 order parameter. Because of the complex phase factors in Eq. (1.3) the type-2 phase has interesting topologically stable line defects that carry circulation; however, this phase does not allow for the coreless vortex structures associated with the type-1 phase.

In region 3 the GL free-energy functional is minimized by any real, traceless and symmetric order parameter

$$
\begin{equation*}
A_{\mu v}^{(3)} \propto u_{\mu} u_{\nu}+r v_{\mu} v_{v}-(1+r) w_{\mu} w_{v} \tag{1.4}
\end{equation*}
$$

where $(\hat{u}, \widehat{v}, \widehat{w})$ is an orthonormal triad and $-1 \leq r \leq-\frac{1}{2}$ parametrizes the accidental degeneracy of the type-3 phases. In particular, the state with $r=-\frac{1}{2}$,

$$
\begin{equation*}
A_{\mu \nu}^{(3)} \propto\left(u_{\mu} u_{\nu}-\frac{1}{3} \delta_{\mu \nu}\right) \tag{1.5}
\end{equation*}
$$

describes ${ }^{3} P_{2}$ Cooper pairs in a pure $M_{J}=0$ state with u as the quantization axis, and is the most probable candidate for the uniform equilibrium ${ }^{3} P_{2}$ phase if a type- 3 phase is energetically stable. ${ }^{4}$

The type- 3 phases are likely candidates for the equilibrium state because the BCS theory values of the GL parameters $\left\{\bar{\beta}_{i}\right\}$ lie in region 3. However, relatively small corrections to the BCS parameters could stabilize the type-2 phase. Much larger modifications to the BCStheory values could stabilize the ferromagnetic type-1 phase or destabilize all possible phases within the fourthorder GL theory.

The corrections to the BCS free-energy functional were systematically examined by Rainer and Serene. ${ }^{6}$ There it was shown that the free energy has an expansion in the parameter T_{c} / T_{F}, the ratio of the transition temperature to the Fermi temperature. Estimates of this ratio for the ${ }^{3} P_{2}$ neutron superfluid vary between 10^{-3} and 10^{-1}. ${ }^{15,4}$ The BCS free energy is of the order $\left(T_{c} / T_{F}\right)^{2}$, while the strong-coupling corrections to the free energy are of the order $\left(T_{c} / T_{F}\right)^{3}|T|^{2}$, where $|T|$ is the normalized quasiparticle-scattering amplitude. The important conclusion of Rainer and Serene is that to leading order in T_{c} / T_{F} the strong-coupling corrections are given by
weighted angular averages of the normal-state scattering amplitude for quasiparticles at the Fermi surface. Thus, with a good approximation for the quasiparticle-scattering amplitude the leading-order strong-coupling corrections can be calculated. The form of the dimensionless quasiparticle-scattering amplitude $T_{\alpha \beta, \gamma \rho}\left(\widehat{\kappa}_{1}, \widehat{\kappa}_{2} ; \widehat{\kappa}_{3}, \widehat{\kappa}_{4}\right)$ is dictated by the microscopic forces among particles. When only central forces are present the T amplitude has the form

$$
\begin{align*}
T_{\alpha \beta, \gamma \rho}^{(\mathrm{cen})}\left(\widehat{\kappa}_{1}, \hat{\kappa}_{2} ; \widehat{\kappa}_{3}, \hat{\kappa}_{4}\right)= & T^{(s)}(\theta, \phi) \delta_{\alpha \gamma} \delta_{\beta \rho} \\
& +T^{(a)}(\theta, \phi) \vec{\sigma}_{\alpha \gamma} \cdot \vec{\sigma}_{\beta \rho} \tag{1.6}
\end{align*}
$$

where (θ, ϕ) are the Abrikosov-Khalatnikov ${ }^{7}$ angles for four unit vectors $\hat{\kappa}_{1}, \hat{\kappa}_{2}, \widehat{\kappa}_{3}, \hat{\kappa}_{4}$ for the directions of the quasiparticle momenta which satisfy the momentum conservation law $\widehat{\kappa}_{1}+\widehat{\kappa}_{2}=\widehat{\kappa}_{3}+\widehat{\kappa}_{4}$. Specifically, $\cos \theta=\widehat{\kappa}_{1} \cdot \widehat{\kappa}_{2}$ and $\cos \phi=\widehat{\kappa}_{1} \cdot\left(\widehat{\kappa}_{3}-\widehat{\kappa}_{4}\right) /\left(1-\widehat{\kappa}_{1} \cdot \widehat{\kappa}_{2}\right)$. Nucleon-nucleon scattering phase-shift data at laboratory energies $E_{L} \geq 300$ MeV (corresponding to Fermi energies $E_{F} \geq 75 \mathrm{MeV}$) suggest that at the densities $\rho \geq 5.10^{13} \mathrm{~g} / \mathrm{cm}^{3}$ (i.e., inside neutron stars) spin-orbit forces between neutron excitations at the Fermi surface are large, while central forces are smaller and repulsive. ${ }^{8}$ Thus, we suggest that the T amplitude at high densities in neutron-star matter is dominated by a spin-orbit scattering term
$T_{\alpha \beta, \gamma \rho}^{(\mathrm{so})}\left(\widehat{\kappa}_{1}, \widehat{\kappa}_{2} ; \hat{\kappa}_{3}, \widehat{\kappa}_{4}\right)=L\left(q, q^{\prime}\right) \widehat{q} \times \hat{q}^{\prime} \cdot\left(\delta_{\alpha \gamma} \vec{\sigma}_{\beta \rho}+\vec{\sigma}_{\alpha \gamma} \delta_{\beta \rho}\right)$.

Here $\overrightarrow{\mathrm{q}}=\vec{\kappa}_{3}-\vec{\kappa}_{1}$ and $\overrightarrow{\mathrm{q}}^{\prime}=\vec{\kappa}_{4}-\vec{\kappa}_{1}$ are the momentum transfers and $\vec{\kappa}_{i}=\kappa_{F} \hat{\kappa}_{i}, i=1,2,3,4$. In a potential approximation the function $L\left(q, q^{\prime}\right)$ is given by

$$
\begin{equation*}
L\left(q, q^{\prime}\right)=\frac{i}{4}\left[q^{\prime} \frac{d}{d q} \widetilde{f}(q)+q \frac{d}{d q^{\prime}} \widetilde{f}\left(q^{\prime}\right)\right] \tag{1.8}
\end{equation*}
$$

where $\widetilde{f}(q)$ is proportional to the Fourier transform of the radial factor $V(r)$ in the spin-orbit interaction $V(r) \overrightarrow{\mathbf{L}} \cdot \overrightarrow{\mathbf{S}} / \hbar^{2}$.
The total T amplitude is given by the sum of $T^{(\mathrm{cen})}$ and $T^{(\mathrm{so})}$ in Eqs. (1.6) and (1.7). ${ }^{9}$ The strong-coupling corrections $\Delta \bar{\beta}_{i}$ in the GL free-energy functional are weighted angular averages of the total T amplitude. In order to evaluate these quantities we use the $s-p$ wave approximation of Dy and Pethick, ${ }^{10}$ which relates $T^{(\text {cen })}$ to the $l=0,1$ Landau-Fermi liquid parameters, while for $T^{(\text {so })}$ it is most convenient to expand $(d / d q) \widetilde{f}(q)$ in the Legendre polynomials of $x_{2}=\widehat{\kappa}_{1} \cdot \widehat{\kappa}_{2}\left[q=2 \kappa_{F}\left(\left(1-x_{2}\right) / 2\right)^{1 / 2}\right]$. After retaining only the $l=0,1$ terms in $(d / d q) \widetilde{f}(q)$, the resulting expressions for $\Delta \beta_{i}$ are functions of three Landau parameters $\boldsymbol{A}_{0}^{s}, A_{0}^{a}$, and \boldsymbol{A}_{1}^{s}, and two spin-orbit parameters a_{0} and a_{1}. When spin-orbit forces dominate we show that the corrections to the BCS theory do not lead to nonunitary phases; spin-orbit scattering moves the phase point away from regions 1 and 2. Very large values of T_{c} / T_{F} and the spin-orbit coupling strength may lead to breakdown of the stability conditions on the fourth-order GL functional.
To discuss the phase point ($\bar{\beta}_{1} / \bar{\beta}_{2}, \bar{\beta}_{3} / \bar{\beta}_{2}$) with both central and spin-orbit scattering included, we fix $T^{(\text {cen })}$ with
the Landau parameters evaluated by other authors ${ }^{11,12}$ and vary the spin-orbit parameter a_{0} (it turns out that contributions proportional to a_{1} can be neglected). For a range of values of a_{0} determined from nucleon phaseshift data, we find that the phase point moves away from regions 1 and 2 , so that spin-orbit scattering is not expected to stabilize either of these phases.

II. CALCULATION AND ANALYSIS OF STRONG-COUPLING CORRECTIONS

The GL functional is a functional of the off-diagonal self-energy $\Delta(\hat{\kappa})$, which is related to the 3×3-matrix order parameter by

$$
\begin{align*}
& \Delta(\widehat{\kappa})=i \vec{\sigma} \sigma^{2} \cdot \vec{\Delta}(\widehat{\kappa}), \\
& \Delta_{\mu}(\widehat{\kappa})=\sum_{j=1}^{3} A_{\mu j}(\widehat{\kappa})_{j} \tag{2.1}
\end{align*}
$$

The GL functional can be written as the sum of the BCS term plus strong-coupling corrections,

$$
\begin{equation*}
\Delta \Omega_{\mathrm{GL}}[\Delta]=\Delta \Omega_{\mathrm{BCS}}[\Delta]+\Delta \phi_{\mathrm{SC}}[\Delta] \tag{2.2}
\end{equation*}
$$

where $\Delta \phi_{\text {SC }}$ has a diagrammatic expansion. The leading terms for $\Delta \phi_{\mathrm{SC}}$ are determined by the normal-state quasiparticle-scattering amplitude and $T_{c} / T_{F}{ }^{6}$ Using the
notation of Rainer and Serene, ${ }^{6} \quad \Delta \phi_{\mathrm{SC}}=\Delta \phi_{B}+\Delta \phi_{C}$ $+\Delta \phi_{D}+\Delta \phi_{F}$, the expressions for $\Delta \phi_{\alpha}(\alpha=B, C, D, F)$ are calculated with the scattering amplitude $T=T^{(\text {cen })}$ $+T^{(\mathrm{so})}$ given by Eqs. (1.6) and (1.7) and are listed in Appendix A. After doing the spin traces the resulting expressions contain angular integrals of the form

$$
\begin{array}{r}
\int \frac{d \Omega_{1}}{4 \pi} \int \frac{d \Omega_{2}}{4 \pi} \int \frac{d \Omega_{3}}{4 \pi} \delta\left(\left\|\hat{\kappa}_{1}+\widehat{\kappa}_{2}-\widehat{\kappa}_{3}\right\|-1\right) \\
\times A\left(\widehat{\kappa}_{1}, \widehat{\kappa}_{2}, \hat{\kappa}_{3}\right) B\left(\widehat{\kappa}_{1}, \widehat{\kappa}_{2}, \widehat{\kappa}_{3}\right), \tag{2.3}
\end{array}
$$

where $A\left(\widehat{\kappa}_{1}, \widehat{\kappa}_{2}, \hat{\kappa}_{3}\right)$ depends only on $T^{(\alpha)}=T^{(\alpha)}(\theta, \phi)$, $\widetilde{T}^{(\alpha)}=T^{(\alpha)}(\widetilde{\theta}, \widetilde{\phi}), \quad L=\underset{\widetilde{\phi}}{L}\left(q, q^{\prime}\right)$, and $\widetilde{L}=L(q, \kappa)$ with $\alpha=s$, $a, \vec{\kappa}=\vec{\kappa}_{1}+\vec{\kappa}_{2}$, and ($\widetilde{\theta}, \widetilde{\phi}$) are Abrikosov-Khalatnikov angles for ($\widehat{\kappa}_{3},-\widehat{\kappa}_{2}, \widehat{\kappa}_{1},-\widehat{\kappa}_{4}$). All these amplitudes are functions of (θ, ϕ). The function $B\left(\widehat{\kappa}_{1}, \hat{\kappa}_{2}, \hat{\kappa}_{3}\right)$ contains products of different energy-gap vectors $\Delta_{\mu}\left(\hat{\kappa}_{i}\right)$ and projections of $\hat{q}, \hat{q}^{\prime}$, and $\hat{\kappa}$, and therefore it depends on other variables besides (θ, ϕ). In Appendix A we integrate out these extra variables expressing $\Delta \phi_{\alpha}$ in terms of weighted averages over the angles (θ, ϕ). Our result for the strong-coupling corrections

$$
\Delta \bar{\beta}_{i}=\Delta \bar{\beta}_{i}^{B+C}+\Delta \bar{\beta}_{i}^{D}+\Delta \bar{\beta}_{i}^{C}
$$

in terms of these averages is

$$
\begin{align*}
& \Delta \bar{\beta}_{i}^{B+C}=-\eta \frac{6.84}{16}\left\langle\bar{w}_{i}^{B+C} T^{(s) 2}+\bar{v}_{i}^{B+C} T^{(a) 2}+\bar{u}_{i}^{B+C} L^{2}+\bar{\chi}_{i}^{(s) B+C_{i}}{ }^{(s)}+\bar{\chi}_{i}^{(a) B+C_{i}}{ }^{(a)} T^{(a)}\right\rangle, \\
& \Delta \beta_{i}^{D}=-\eta \frac{10.15}{4}\left\langle\bar{w}_{i}^{D}\left(T^{(s)} \widetilde{T}^{(s)}+T^{(a)} \widetilde{T}^{(a)}\right)+\bar{v}_{i}^{D}\left(T^{(s)} \widetilde{T}^{(a)}+T^{(a)} \widetilde{T}^{(s)}\right)+\bar{u}_{i}^{D} L \widetilde{L}+\bar{\chi}_{i}^{(s) D} i L \widetilde{T}^{(s)}+\bar{\chi}_{i}^{(a) D} i L \widetilde{T}^{(a)}\right\rangle, \tag{2.4}\\
& \Delta \bar{\beta}_{i}^{F}=-\eta \frac{30.44}{16}\left\langle\bar{w}_{i}^{F} T^{(s) 2}+\bar{v}_{i}^{F} T^{(a) 2}+\bar{u}_{i}^{F} L^{2}+\bar{\chi}_{i}^{(s) F} i L T^{(s)}+\bar{\chi}_{i}^{(a) F} i L T^{(a)}\right\rangle
\end{align*}
$$

TABLE I. The weighting functions $\bar{w}, \bar{v}, \bar{u}, \bar{\chi}{ }^{(s)(a)}$ expressed over momentum-transfer variables t_{2} and t_{3}, where $x^{\prime}=\left[\left(1-t_{2}-t_{3}\right) t_{3}\right]^{1 / 2}$.

	$B+C$	D	F
\bar{w}_{1}	$10\left(t_{2}-t_{2}{ }^{2}\right)$	$-1+2 t_{2}+6\left(t_{3}-t_{2} t_{3}-t_{3}{ }^{2}\right)$	$20\left(t_{2}-t_{2}{ }^{2}\right)-40 t_{2} t_{3}$
\bar{w}_{2}	$8-8\left(t_{2}-t_{2}{ }^{2}\right)$	$-4+8 t_{2}+4\left(t_{3}-t_{2} t_{3}-t_{3}{ }^{2}\right)$	$8-8\left(t_{2}-t_{2}{ }^{2}\right)-8\left(t_{3}-t_{3}{ }^{2}\right)-32 t_{2} t_{3}$
\bar{w}_{3}	-8-12($t_{2}-t_{2}{ }^{2}$)	$2-4 t_{2}-12\left(t_{3}-t_{2} t_{3}-t_{3}{ }^{2}\right)$	$-8-52\left(t_{2}-t_{2}{ }^{2}\right)+28\left(t_{3}-t_{3}{ }^{2}\right)+112 t_{2} t_{3}$
\bar{v}_{1}	$4-34\left(t_{2}-t_{2}{ }^{2}\right)$	$1-2 t_{2}-16\left(t_{3}-t_{2} t_{3}-t_{3}{ }^{2}\right)$	$8-68\left(t_{2}-t_{2}{ }^{2}\right)-48\left(t_{3}-t_{3}{ }^{2}\right)+168 t_{2} t_{3}$
\bar{v}_{2}	$8-8\left(t_{2}-t_{2}{ }^{2}\right)$	$-4+8 t_{2}+4\left(t_{3}-t_{2} t_{3}-t_{3}{ }^{2}\right)$	$-8+8\left(t_{2}-t_{2}{ }^{2}\right)+8\left(t_{3}-t_{3}{ }^{2}\right)+32 t_{2} t_{3}$
\bar{v}_{3}	$60\left(t_{2}-t_{2}{ }^{2}\right)$	$6-12 t_{2}+24\left(t_{3}-t_{2} t_{3}-t_{3}{ }^{2}\right)$	$24+36\left(t_{2}-t_{2}{ }^{2}\right)-44\left(t_{3}-t_{3}{ }^{2}\right)-176 t_{2} t_{3}$
\bar{u}_{1}	$\left(-21 t_{2}-21 t_{3}+28 t_{2} t_{3}\right) / 7$	$x^{\prime}\left(1-\frac{4}{7} t_{2}\right)$	$\left[-16+72\left(t_{2}+t_{3}\right)-48\left(t_{2}{ }^{2}+t_{3}{ }^{2}\right)-248 t_{2} t_{3}\right] / 7$
\bar{u}_{2}	$\begin{aligned} & \left(-96+96 t_{2}+16 t_{3}-120 t_{2}{ }^{2}\right. \\ & \left.-96 t_{2} t_{3}-40 t_{3}{ }^{2}\right) / 7 \end{aligned}$	$x^{\prime}\left(-\frac{8}{7} t_{2}\right)$	$\left[16-16\left(t_{2}+t_{3}\right)+48\left(t_{2}{ }^{2}+t_{3}{ }^{2}\right)-256 t_{2} t_{3}\right] / 7$
\bar{u}_{3}	$\begin{aligned} & \left(24+18 t_{2}+66 t_{3}+72 t_{2}{ }^{2}\right. \\ & \left.+24 t_{2} t_{3}+24 t_{3}{ }^{2}\right) / 7 \end{aligned}$	$x^{\prime}(-2)$	$\left[16-128\left(t_{2}+t_{3}\right)+48\left(t_{2}{ }^{2}+t_{3}{ }^{2}\right)+752 t_{2} t_{3}\right] / 7$
$\bar{\chi}_{1}^{(s)}$	$\left(12-24 t_{2}\right)\left(t_{2} t_{3}\right)^{1 / 2}$	[16-16($\left.\left.t_{2}+t_{3}\right)\right]\left(t_{2} t_{3}\right)^{1 / 2}$	$\left(-20+8 t_{2}+32 t_{3}\right)\left(t_{2} t_{3}\right)^{1 / 2}$
$\bar{\chi}_{2}^{(s)}$	0	$\left[-16\left(t_{2}+t_{3}\right)\right]\left(t_{2} t_{3}\right)^{1 / 2}$	$\left(-32 t_{2}+32 t_{3}\right)\left(t_{2} t_{3}\right)^{1 / 2}$
$\bar{\chi}^{(s)}$	$\left(-24+48 t_{2}\right)\left(t_{2} t_{3}\right)^{1 / 2}$	$\left[-20+48\left(t_{2}+t_{3}\right)\right]\left(t_{2} t_{3}\right)^{1 / 2}$	$\left(40+16 t_{2}-96 t_{3}\right)\left(t_{2} t_{3}\right)^{1 / 2}$
$\bar{\chi}^{(a)}$	$\left(-12+24 t_{2}\right)\left(t_{2} t_{3}\right)^{1 / 2}$	$\left[-26+32\left(t_{2}+t_{3}\right)\right]\left(t_{2} t_{3}\right)^{1 / 2}$	$\left(60-72 t_{2}-48 t_{3}\right)\left(t_{2} t_{3}\right)^{1 / 2}$
$\bar{\chi}^{(a)}$	0	$\left[-16\left(t_{2}+t_{3}\right)\right]\left(t_{2} t_{3}\right)^{1 / 2}$	$\left(-32 t_{2}+32 t_{3}\right)\left(t_{2} t_{3}\right)^{1 / 2}$
$\bar{\chi}^{(a)}$	$\left(24-48 t_{2}\right)\left(t_{2} t_{3}\right)^{1 / 2}$	$\left[52-48\left(t_{2}+t_{3}\right)\right]\left(t_{2} t_{3}\right)^{1 / 2}$	$\left(-124+176 t_{2}+72 t_{3}\right)\left(t_{2} t_{3}\right)^{1 / 2}$

The coefficient $\eta \equiv N(0)\left(30 k_{B} T_{c} v_{F} p_{F}\right)^{-1}$ is related to the BCS value of $\bar{\beta}_{2}$ by $\eta=1.173\left(T_{c} / T_{F}\right) \bar{\beta}_{2}^{\mathrm{BCS}}$ and the strongcoupling GL coefficients are defined by

$$
\Delta \phi_{\alpha}=\Delta \bar{\beta}_{i}^{\alpha}\left|\operatorname{Tr} A^{2}\right|^{2}+\Delta \bar{\beta}_{2}^{\alpha}\left(\operatorname{Tr} A A^{*}\right)^{2}+\Delta \bar{B}_{3}^{\alpha} \operatorname{Tr} A^{2} A^{* 2}
$$

while $\Delta \bar{\beta}_{i}^{B+C}=\Delta \bar{\beta}_{i}^{B}+\Delta \bar{\beta}_{i}^{C}$ and

$$
\langle\cdots\rangle \equiv \int_{0}^{1} d(\cos \theta / 2) \int_{0}^{2 \pi} \frac{d \phi}{2 \pi}(\cdots)
$$

In Table I we give weighting functions $\bar{w}, \bar{v}, \bar{u}, \bar{\chi}^{(s),(a)}$ expressed in terms of the momentum-transfer variables $t_{2}=\left(1-x_{2}\right) / 2$ and $t_{3}=\left(1-x_{3}\right) / 2$, where

$$
x_{2}=\widehat{\kappa}_{1} \cdot \widehat{\kappa}_{3}=\cos ^{2} \frac{\theta}{2}+\sin ^{2} \frac{\theta}{2} \cos \phi
$$

and

$$
x_{3}=\widehat{\kappa}_{1} \cdot \widehat{\kappa}_{4}=\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2} \cos \phi
$$

To complete the calculation we need a reasonable approximation for the scattering amplitudes. For the central force we use the $s-p$ wave approximation of Dy and Pethick. ${ }^{10}$ In this case $T^{(\alpha)}$ and $\widetilde{T}^{(\alpha)}$ become

$$
\begin{align*}
& T^{(s)}=A_{0}^{s}+A_{1}^{s}+t_{2}\left(-3 A_{0}^{s}-3 A_{0}^{a}-2 A_{1}^{s}\right)+t_{3}\left(-2 A_{1}^{s}\right), \\
& T^{(a)}=-A_{0}^{s}-A_{1}^{s}+t_{2}\left(A_{0}^{s}+A_{0}^{a}+2 A_{1}^{s}\right)+t_{3}\left(2 A_{0}^{s}+2 A_{0}^{a}+2 A_{1}^{s}\right), \\
& \widetilde{T}^{(s)}=A_{0}^{s}-A_{1}^{s}+t_{2}\left(-3 A_{0}^{s}-3 A_{0}^{a}\right)+t_{3}\left(2 A_{1}^{s}\right), \tag{2.5}\\
& \widetilde{T}^{(a)}=A_{0}^{s}+2 A_{0}^{a}+A_{1}^{s}+t_{2}\left(-A_{0}^{s}-A_{0}^{a}\right)+t_{3}\left(-2 A_{0}^{s}-2 A_{0}^{a}-2 A_{1}^{s}\right) .
\end{align*}
$$

We have used the forward-scattering sum rule (FWSSR) ${ }^{13}$ to write $A_{1}^{a}=-\left(A_{0}^{s}+A_{1}^{s}+A_{0}^{a}\right)$ in the $s-p$ wave approximation. We use a potential approximation for the spinorbit amplitudes L and \widetilde{L} and parametrize

$$
\frac{d}{d q} \widetilde{f}(q)=-\frac{q}{k_{F}^{2}} \frac{d}{d x_{2}} \widetilde{f}(q)=\frac{q}{k_{F}^{2}} \sum_{l=0}^{\infty} a_{l} P_{l}\left(x_{2}\right)
$$

and similarly for $\widetilde{f}\left(q^{\prime}\right)$ and $\widetilde{f}(\kappa) ; P_{l}$ is a Legendre polynomial of order l. The effective spin-orbit potential $\widetilde{f}(q)$ is real and therefore so are all a_{l} 's. Although little is known about the spin-orbit interaction in neutron matter, we assume that the effective potential $V(r)$ is very attractive at short distances, while for $r \geq 1 \mathrm{fm} V(r)$ is assumed unimportant. Numerical estimates of $\left\{a_{l}\right\}$ based on several short-range attractive potentials for a Fermi wave vector $\kappa_{F}=1.8 \mathrm{fm}^{-1}$, which is typical for neutron-star interiors, show that $a_{0}>0,0 \leq a_{1} \leq a_{0}$ with a typical value $a_{1} \sim a_{0} / 2$, and $\left|a_{l}\right| \leq a_{0} / 5$ for $l \geq 2$. In general, once $a_{1} \notin\left[\sim 0, a_{0}\right]$ which happens for potentials of longer range (or at larger κ_{F} 's) a_{l} 's with $l \geq 2$ also become of order a_{0} and our approximation breaks down. With these assumptions, the spin-orbit amplitudes are approximately

$$
\begin{aligned}
L & =i\left(t_{2} t_{3}\right)^{1 / 2} \sum_{l=0}^{\infty} a_{l}\left[P_{l}\left(x_{2}\right)+P_{l}\left(x_{3}\right)\right] \\
& \cong 2 i\left(t_{2} t_{3}\right)^{1 / 2}\left[a_{0}+a_{1}\left(1-t_{2}-t_{3}\right)\right] \\
\widetilde{L} & =i\left[\left(1-t_{2}-t_{3}\right) t_{2}\right]^{1 / 2} \sum_{l=0}^{\infty} a_{l}\left[P_{l}\left(x_{2}\right)+P_{l}\left(-x_{1}\right)\right] \\
& \cong 2 i\left[\left(1-t_{2}-t_{3}\right) t_{2}\right]^{1 / 2}\left[a_{0}+a_{1} t_{3}\right]
\end{aligned}
$$

Inspection of Eqs. (2.4)-(2.6) and the weighting functions given in Table I shows that $\Delta \bar{\beta}_{i}^{\alpha}$ are linear combinations of basic angular averages $C_{m n}=\left\langle t_{2}{ }^{m} t_{3}{ }^{n}\right\rangle$ for $m, n=1,2, \ldots$, which can be easily evaluated. We then find that the spin-orbit contribution to $\Delta \bar{\beta}_{i}$ is

$$
\begin{align*}
& \Delta \bar{\beta}_{1}^{\text {so }}=-\eta a_{0}^{2}\left(1.061+0.104 x+0.008 x^{2}\right), \\
& \Delta \bar{\beta}_{2}^{\text {so }}=-\eta a_{0}^{2}\left(2.491+0.517 x+0.066 x^{2}\right), \tag{2.7}\\
& \Delta \bar{\beta}_{3}^{\text {so }}=\eta a_{0}^{2}\left(3.863+0.472 x+0.040 x^{2}\right),
\end{align*}
$$

where $x=a_{1} / a_{0}$. The cross products between the spinorbit and the central terms give the following contribution to $\Delta \bar{\beta}_{i}$:

$$
\begin{align*}
\Delta \bar{\beta}_{i}^{\mathrm{so} / c}= & -\eta a_{0}\left(-1.29 A_{0}^{s}-5.73 A_{0}^{a}-0.71 A_{1}^{s}\right) \\
& -\eta a_{1}\left(0.09 A_{0}^{s}-0.61 A_{0}^{a}+0.21 A_{1}^{s}\right) \\
\Delta \bar{\beta}_{2}^{\mathrm{so} / c}= & \eta a_{0}\left[6.18\left(A_{0}^{s}+A_{0}^{a}\right)\right] \\
& +\eta a_{1}\left[0.37\left(A_{0}^{s}+A_{0}^{a}\right)\right] \tag{2.8}\\
\Delta \bar{\beta}_{3}^{\mathrm{so} / c}= & -\eta a_{0}\left(8.80 A_{0}^{s}+17.70 A_{0}^{a}+1.34 A_{1}^{s}\right) \\
& -\eta a_{1}\left(-0.15 A_{0}^{s}+1.63 A_{0}^{a}+0.17 A_{1}^{s}\right)
\end{align*}
$$

Finally, the central-force contributions to the $\Delta \bar{\beta}_{i}$, calculated in the $s-p$ wave approximation with A_{1}^{a} eliminated by the forward-scattering sum rule, are ${ }^{14}$

$$
\begin{align*}
& \Delta \bar{\beta}_{1}^{\text {cen }}=-\eta\left[4.47\left(A_{0}^{s}\right)^{2}+26.07\left(A_{0}^{a}\right)^{2}+8.87\left(A_{1}^{s}\right)^{2}+19.83 A_{0}^{s} A_{0}^{a}+11.07 A_{0}^{s} A_{1}^{s}+27.40 A_{0}^{a} A_{1}^{s}\right], \\
& \Delta \bar{\beta}_{2}^{\text {cen }}=-\eta\left[11.73\left(A_{0}^{s}\right)^{2}+17.40\left(A_{0}^{a}\right)^{2}+2.80\left(A_{1}^{s}\right)^{2}+23.20 A_{0}^{s} A_{0}^{a}+3.21 A_{0}^{s} A_{1}^{s}+6.99 A_{0}^{a} A_{1}^{s}\right], \tag{2.9}\\
& \Delta \bar{\beta}_{3}^{\text {cen }}=\eta\left[3.76\left(A_{0}^{s}\right)^{2}+2.83\left(A_{0}^{a}\right)^{2}-15.20\left(A_{1}^{s}\right)^{2}+8.68 A_{0}^{s} A_{0}^{a}-16.39 A_{0}^{s} A_{1}^{s}-20.87 A_{0}^{a} A_{1}^{s}\right] .
\end{align*}
$$

To analyze the position of the phase point $\left(p_{1}, p_{3}\right)$, where $p_{1} \equiv \bar{\beta}_{1} / \bar{\beta}_{2}$ and $p_{3} \equiv \bar{\beta}_{3} / \bar{\beta}_{2}$, it is convenient to normalize the strong-coupling parameters to $\bar{\beta}_{2}^{\mathrm{BCS}}$ by writing $b_{i} \equiv \Delta \bar{\beta}_{i} / \bar{\beta}_{2}^{\mathrm{BCS}}$. The coordinates of the phase point in Fig. 1 are then $p_{1}=b_{1} /\left(1+b_{2}\right)$ and $p_{3}=\left(b_{3}-1\right) /\left(1+b_{2}\right)$. First we consider the case of very strong spin-orbit forces when $\Delta \bar{\beta}_{i}$ can be approximated by $\Delta \bar{\beta}_{i}^{\text {so }}$.

From Eq. (2.7), $\Delta \bar{\beta}_{i}^{\text {so }}$ is negative for any value of $x=a_{1} / a_{0}$, which means that the phase point moves away from region 2. The slope of the line which connects the phase point $\left(p_{1}, p_{3}\right)$ with the BCS phase point $(0,-1)$ is given by $S=\left(b_{2}+b_{3}\right) / b_{1}$ and depends only on x if we neglect the central terms. The minimum slope $S=-1.55>-2$ for $x=-2.64$ shows that region 1 is also excluded. Finally, we check if strong spin-orbit scattering violates the stability conditions on the fourthorder GL free-energy functional. In our case $\bar{\beta}_{1}<0$ and $\underline{S}^{S}>-2$ imply that the relevant stability requirements are $\bar{\beta}_{2}>0$ and $p_{3}>-2\left(p_{1}+1\right)$. The first condition $b_{2}>-1$ for typical values $a_{0}=2$ (see Appendix B), $x=\frac{1}{2}$, and $T_{c} / T_{F}=4 \times 10^{-3}$ is satisfied by a factor of 20 . The second condition gives $a_{0}{ }^{2} T_{c} / T_{F} \leq 0.13$ using $x=\frac{1}{2}$; for the above estimates of a_{0} and T_{c} / T_{F} this inequality is satisfied by a factor of 8 . However, a_{0} and T_{c} / T_{F} are not well known. A transition temperature as high as $T_{c} / T_{F} \sim 10^{-1}$ is not ruled out. A violation of the stability conditions presumably implies that higher-order terms in the GL functional determine the equilibrium phase.

To estimate $\Delta \bar{\beta}_{i}$ with both spin-orbit and central forces included, we use the available calculations of neutronmatter Fermi liquid parameters. ${ }^{11,12}$ For $\kappa_{F}=1.8 \mathrm{fm}^{-1}$, from Bäckman et al. ${ }^{11}$ follows $A_{0}^{s}=0.14, A_{0}^{a}=0.50$, and $A_{1}^{s}=-0.57$, which gives
$\Delta \bar{\beta}_{1}=\left(-2.560+3.101 a_{0}-1.245 a_{0}{ }^{2}\right) \frac{T_{c}}{T_{F}} \bar{\beta}_{2}^{\mathrm{BCS}}$,
$\Delta \bar{\beta}_{2}=\left(-5.707+4.643 a_{0}-2.922 a_{0}^{2}\right) \frac{T_{c}}{T_{F}} \bar{\beta}_{2}^{\mathrm{BCS}}$,
$\Delta \bar{\beta}_{3}=\left(4.347-10.932 a_{0}+4.531 a_{0}{ }^{2}\right) \frac{T_{c}}{T_{F}} \bar{\beta}_{2}^{\mathrm{BCS}}$.

We have neglected the a_{1} terms since they are an order of magnitude smaller than the a_{0} terms. $\Delta \bar{\beta}_{1}$ given by Eq. (2.10) is always negative which implies that the phase point moves away from region 2 . The minimum slope $S(-5.4) \cong-1.43>-2$ shows the phase point also moves away from region 1. For values of a_{0} between $\frac{1}{2}$ and 2 the slope is large and positive $(S \sim 10)$ and the phase point may cross the $p_{3}=-2\left(p_{1}+1\right)$ stability line if T_{c} / T_{F} is sufficiently large. For $a_{0}=2$ and $T_{c} / T_{F}=4 \times 10^{-3}$ (a typical estimate for this ratio ${ }^{15,4}$) the phase point is close to the BCS phase point $\left(p_{1} \cong-5.5 \times 10^{-3}, p_{3}+1\right.$ $\cong-3.1 \times 10^{-2}$).
The qualitative results are rather insensitive on particular values of Landau parameters. This suggests that spin-orbit scattering will not stabilize a nonunitary ${ }^{3} P_{2}$ phase. It also appears unlikely that strong spin-orbit scattering violates the stability conditions of the fourthorder GL functional. Better estimates of T_{c} and spinorbit scattering amplitudes would decide both questions.

ACKNOWLEDGMENT

This research was supported in part by the U.S. National Science Foundation under Grant No. NSF DMR802063.

APPENDIX A

Let $\Delta \phi_{\alpha}(\alpha=B, C, D, F)$ be the free-energy contribution of diagram α of Rainer and Serene. ${ }^{6}$ Near $T_{c}, \Delta \phi_{\alpha}$ is fourth order in $A_{\mu \nu}$ and has the form

$$
\begin{aligned}
\Delta \phi_{\alpha}= & f_{\alpha} \frac{N(0)}{k_{B} T_{C} v_{F} P_{F}} \\
& \times \int \frac{d \Omega_{1}}{4 \pi} \int \frac{d \Omega_{2}}{4 \pi} \int \frac{d \Omega_{3}}{4 \pi} \delta\left(\left\|\widehat{\kappa}_{4}\right\|-1\right) S_{\alpha}\left(\widehat{\kappa}_{1}, \hat{\kappa}_{2}, \widehat{\kappa}_{3}\right) .
\end{aligned}
$$

(A1)
The constants f_{α} come from frequency sums and combinational coefficients and are given by $f_{B}=\frac{1}{2} f_{c}$ $\cong-6.84 / 16, f_{D} \cong 10.15 / 2$, and $f_{F} \cong-30.44 / 8$. The S_{α} are functions of $\Delta\left(\widehat{\kappa}_{i}\right)$ and $\bar{\Delta}\left(\widehat{\kappa}_{i}\right) \equiv-i \sigma^{2} \vec{\sigma} \cdot \vec{\Delta}\left(\widehat{\kappa}_{i}\right)^{*}$,

$$
\begin{align*}
& S_{B}=\frac{1}{4} T_{\alpha \beta, \gamma \rho}(\text { set } 1) T_{\gamma \rho, a^{\prime} \beta^{\prime}}(\text { set } 2)\left(\Delta\left(\widehat{\kappa}_{1}\right) \bar{\Delta}\left(\widehat{\kappa}_{1}\right)\right)_{\alpha^{\prime} \alpha}\left(\Delta\left(\widehat{\kappa}_{2}\right) \bar{\Delta}\left(\widehat{\kappa}_{2}\right)\right)_{\beta^{\prime} \beta} \\
& S_{C}=\frac{1}{4} T_{\alpha \beta, \gamma \rho}(\text { set } 1) T_{\gamma^{\prime} \rho, \alpha^{\prime} \beta}(\text { set } 2)\left(\Delta\left(\widehat{\kappa}_{1}\right) \bar{\Delta}\left(\widehat{\kappa}_{1}\right)\right)_{\alpha^{\prime} \alpha}\left(\Delta\left(\widehat{\kappa}_{3}\right) \bar{\Delta}\left(\widehat{\kappa}_{3}\right)\right)_{\gamma \gamma^{\prime}} \tag{A2}\\
& \left.S_{D}=\frac{1}{4} T_{\alpha \beta, \gamma \rho}(\text { set } 1) T_{\gamma \beta^{\prime}, \alpha^{\prime} \rho^{\prime}}(\text { set } 3)\left(\Delta \widehat{\kappa}_{1}\right) \bar{\Delta}\left(\widehat{\kappa}_{1}\right)\right)_{\alpha^{\prime} \alpha^{\prime}} \Delta\left(\widehat{\kappa}_{4}\right)_{\rho \rho^{\prime}} \bar{\Delta}\left(\widehat{\kappa}_{2}\right)_{\beta \beta^{\prime}}, \\
& S_{F}=\frac{1}{4} T_{\alpha \beta, \gamma \rho}(\text { set } 1) T_{\alpha^{\prime} \beta^{\prime}, \gamma^{\prime} \rho^{\prime}} \text { (set 4) } \bar{\Delta}\left(\widehat{\kappa}_{1}\right)_{\alpha \alpha^{\prime}} \bar{\Delta}\left(\hat{\kappa}_{2}\right)_{\beta \beta^{\prime}} \Delta\left(\widehat{\kappa}_{3}\right)_{\gamma \gamma^{\prime}} \Delta\left(\widehat{\kappa}_{4}\right)_{\rho \rho^{\prime}},
\end{align*}
$$

where set 1 , set 2 , set 3 , and set 4 denote ordered quadruples of unit vectors $\left(\widehat{\kappa}_{1}, \widehat{\kappa}_{2} ; \widehat{\kappa}_{3}, \widehat{\kappa}_{4}\right),\left(\widehat{\kappa}_{3}, \widehat{\kappa}_{4} ; \widehat{\kappa}_{1}, \widehat{\kappa}_{2}\right),\left(\widehat{\kappa}_{1},-\widehat{\kappa}_{2} ; \widehat{\kappa}_{3},-\widehat{\kappa}_{4}\right)$, and ($-\widehat{\kappa}_{1},-\widehat{\kappa}_{2} ;-\widehat{\kappa}_{3},-\widehat{\kappa}_{4}$). Summation over repeated spin indices is assumed. After performing the spin sums in (A2) and using the invariance of the domain of integration in (A1) under $\widehat{\kappa}_{1} \leftrightarrow \widehat{\kappa}_{2}, \widehat{\kappa}_{3} \leftrightarrow \widehat{\kappa}_{4},\left(\widehat{\kappa}_{3},-\widehat{\kappa}_{2} ; \widehat{\kappa}_{1},-\widehat{\kappa}_{4}\right) \leftrightarrow\left(\widehat{\kappa}_{1}, \widehat{\kappa}_{2} ; \widehat{\kappa}_{3}, \widehat{\kappa}_{4}\right)$, and the antisymmetry property of the T amplitude, we express $\Delta \phi_{\alpha}$ in the form (A1) with S_{α} now given by

$$
\begin{align*}
S_{B}= & \left(\left\|\vec{\Delta}_{1}\right\|^{2}\left\|\vec{\Delta}_{2}\right\|^{2}-\overrightarrow{\mathbf{u}}_{1} \cdot \overrightarrow{\mathrm{u}}_{2}\right) T^{(s) 2}+\left(3\left\|\vec{\Delta}_{1}\right\|^{2}\left\|\vec{\Delta}_{2}\right\|^{2}+5 \overrightarrow{\mathrm{u}}_{1} \cdot \overrightarrow{\mathrm{u}}_{2}\right) T^{(a) 2}+2\left[\left(\overrightarrow{\mathbf{u}}_{1} \cdot \hat{\kappa}\right)\left(\overrightarrow{\mathrm{u}}_{2} \cdot \hat{\kappa}\right)-\left\|\vec{\Delta}_{1}\right\|^{2}\left\|\vec{\Delta}_{2}\right\|^{2}\right] L^{2}, \\
S_{C}= & \left(\left\|\vec{\Delta}_{1}\right\|^{2}\left\|\vec{\Delta}_{3}\right\|^{2}-\overrightarrow{\mathbf{u}}_{1} \cdot \overrightarrow{\mathrm{u}}_{3}\right) T^{(s) 2}+\left(3\left\|\vec{\Delta}_{1}\right\|^{2}\left\|\vec{\Delta}_{3}\right\|^{2}+\overrightarrow{\mathrm{u}}_{1} \cdot \overrightarrow{\mathrm{u}}_{3}\right) T^{(a) 2}+2\left[\left(\overrightarrow{\mathrm{u}}_{1} \cdot \widehat{\kappa}\right)\left(\overrightarrow{\mathrm{u}}_{3} \cdot \widehat{\kappa}\right)-\left\|\vec{\Delta}_{1}\right\|^{2}\left\|\vec{\Delta}_{3}\right\|^{2}\right] L^{2} \\
& +2\left[\left(\overrightarrow{\mathrm{u}}_{1} \times \overrightarrow{\mathrm{u}}_{3}\right) \cdot \hat{q} \times \hat{q}^{\prime}\right] i L\left(T^{(s)}-T^{(a)}\right), \\
S_{D}= & \left(\left\|\vec{\Delta}_{1}\right\|^{2} \Delta_{42}\right)\left(T^{(s)} \widetilde{T}^{(s)}+T^{(a)} \widetilde{T}^{(a)}\right)+\left(-\overrightarrow{\mathrm{u}}_{1} \cdot \overrightarrow{\mathrm{u}}_{42}\right)\left(T^{(s)} \widetilde{T}^{(a)}+T^{(a)} \widetilde{T}^{(s)}\right) \tag{A3}\\
& +\left\{\left\|\vec{\Delta}_{1}\right\|^{2}\left[\left(\vec{\Delta}_{4} \cdot \widehat{\kappa}\right)\left(\vec{\Delta}_{2}^{*} \cdot \hat{q}^{\prime}\right)+\left(\vec{\Delta}_{4} \cdot \widehat{q}^{\prime}\right)\left(\vec{\Delta}_{2}^{*} \cdot \widehat{\kappa}\right)\right]+\left(\overrightarrow{\mathrm{u}}_{1} \cdot \hat{q}^{\prime}\right)\left(\overrightarrow{\mathrm{u}}_{42} \cdot \widehat{\kappa}\right)+\left(\overrightarrow{\mathrm{u}}_{1} \cdot \widehat{\kappa}\right)\left(\overrightarrow{\mathrm{u}}_{42} \cdot \hat{q}^{\prime}\right)+\Delta_{42} \overrightarrow{\mathrm{u}}_{1} \cdot \hat{\kappa} \times \hat{q}^{\prime}\right\} L \widetilde{L} \\
& +\left\{\left[\left(\left\|\vec{\Delta}_{1}\right\|^{2}+\left\|\vec{\Delta}_{3}\right\|^{2}\right) \overrightarrow{\mathrm{u}}_{42}+\Delta_{42}\left(\overrightarrow{\mathrm{u}}_{1}+\overrightarrow{\mathrm{u}}_{3}\right)\right] \cdot \hat{q} \times \hat{q}^{\prime}\right\} i L \widetilde{T}^{(s)} \\
& +\left\{\left[\left(\left\|\vec{\Delta}_{1}\right\|^{2}+\left\|\vec{\Delta}_{3}\right\|^{2}\right) \overrightarrow{\mathrm{u}}_{42}+\vec{\Delta}_{42}\left(\overrightarrow{\mathrm{u}}_{1}+\overrightarrow{\mathrm{u}}_{3}\right)-2\left(\vec{\Delta}_{4} \cdot \overrightarrow{\mathrm{u}}_{1}\right) \vec{\Delta}_{2}^{*}-2\left(\vec{\Delta}_{2}^{*} \cdot \overrightarrow{\mathrm{u}}_{3}\right) \vec{\Delta}_{4}\right] \cdot \hat{q} \times \hat{q}^{\prime}\right\} i L \widetilde{T}^{(a)}, \\
S_{F}= & \left(\Delta_{31} \Delta_{42}+\Delta_{32} \Delta_{41}-\Delta_{34} \Delta_{12}^{*}\right) T^{(s) 2}+\left(-5 \Delta_{31} \Delta_{42}+3 \Delta_{32} \Delta_{41}+5 \Delta_{34} \Delta_{12}^{*}\right) T^{(a) 2} \\
& +2\left[\Delta_{31} \Delta_{42}-2 \Delta_{31}\left(\vec{\Delta}_{4} \cdot \widehat{\kappa}\right)\left(\vec{\Delta}_{2}^{*} \cdot \widehat{\kappa}\right)-\left(\overrightarrow{\mathrm{u}}_{31} \cdot \widehat{\kappa}\right)\left(\overrightarrow{\mathrm{u}}_{42} \cdot \widehat{\kappa}\right)\right] L^{2}+4\left[\Delta_{42}\left(\overrightarrow{\mathrm{u}}_{31} \cdot \hat{q} \times \hat{q}^{\prime}\right)\right] i L T^{(s)} \\
& +4\left\{\left[\Delta_{42} \overrightarrow{\mathrm{u}}_{31}-\left(\vec{\Delta}_{4} \cdot \overrightarrow{\mathrm{u}}_{31}\right) \vec{\Delta}_{2}^{*}-\left(\vec{\Delta}_{2}^{*} \cdot \overrightarrow{\mathrm{u}}_{31}\right) \vec{\Delta}_{4}\right] \cdot \hat{q} \times \hat{q}^{\prime}\right\} i L T^{(a)} .
\end{align*}
$$

The notation in Eqs. (A3) is $\vec{\Delta}_{i}=\vec{\Delta}\left(\hat{\kappa}_{i}\right), \overrightarrow{\mathrm{u}}_{i}=\vec{\Delta}_{i} \times \vec{\Delta}_{i}^{*}$ for $i=1,2,3,4, \Delta_{i j}=\vec{\Delta}_{i} \cdot \vec{\Delta}_{j}^{*}$, and $\overrightarrow{\mathrm{u}}_{i j}=\vec{\Delta}_{i} \times \vec{\Delta}_{j}^{*}$ for $i=3,4$ and $j=1,2$, and $\Delta_{12}^{*}=\vec{\Delta}_{1}^{*} \cdot \vec{\Delta}_{2}^{*}$ and $\Delta_{34}=\vec{\Delta}_{3} \cdot \vec{\Delta}_{4}$. Also

$$
\begin{aligned}
& T^{(\alpha)}=T^{(\alpha)}(\theta, \phi)=T^{(\alpha)}\left(\widehat{\kappa}_{1}, \widehat{\kappa}_{2} ; \widehat{\kappa}_{3}, \widehat{\kappa}_{4}\right), \\
& \widetilde{T}^{(\alpha)}=T^{(\alpha)}(\widetilde{\theta}, \widetilde{\phi})=T^{(\alpha)}\left(\widehat{\kappa}_{3},-\widehat{\kappa}_{2} ; \widehat{\kappa}_{1},-\widehat{\kappa}_{4}\right)
\end{aligned}
$$

for $\alpha=s, a$, and $L=L\left(q, q^{\prime}\right), \widetilde{L}=L(q, \kappa)$.
In order to simplify these expressions for $\Delta \phi_{\alpha}$ we use the identity

$$
\begin{equation*}
\int \frac{d \Omega_{1}}{4 \pi} \int \frac{d \Omega_{2}}{4 \pi} \int \frac{d \Omega_{3}}{4 \pi} \delta\left(\left\|\hat{\kappa}_{1}+\hat{\kappa}_{2}-\hat{\kappa}_{3}\right\|-1\right)=\frac{1}{2} \int_{0}^{1} d(\cos \theta / 2) \int_{0}^{2 \pi} \frac{d \phi}{2 \pi} \int \frac{d \Omega_{\kappa}}{4 \pi} \int_{0}^{2 \pi} \frac{d \psi}{2 \pi} \tag{A4}
\end{equation*}
$$

Rainer and Serene, ${ }^{6}$ show that for fixed (θ, ϕ) the triad $\left(\hat{\kappa}_{1}, \widehat{\kappa}_{2}, \hat{\kappa}_{3}\right)$ can be thought of as a rigid body whose orientation is given by a unit vector $\hat{\kappa}$ and the angle ψ, by which $\hat{z} \times \widehat{\kappa}$ has to be rotated around $\hat{\kappa}$ to align it with $\hat{\kappa}_{1}-\hat{\kappa}_{2}$. The ($\hat{\kappa}, \psi$) integrals of the functions $S_{\alpha}\left(\hat{\kappa}_{1}, \hat{\kappa}_{2}, \hat{\kappa}_{3}\right)$, with $\Delta_{\mu}\left(\hat{\kappa}_{i}\right)=A_{\mu \nu}\left(\hat{\kappa}_{i}\right)_{v}$, become linear combinations of two basic integrals:

$$
\begin{align*}
& M_{4}^{\mu_{1} \cdots \mu_{4}}(\{\vec{l}\})=\int \frac{d \Omega_{\kappa}}{4 \pi} \int_{0}^{2 \pi} \frac{d \psi}{2 \pi} \prod_{i=1}^{4} \vec{l}_{i}^{\mu_{i}}, \\
& M_{6}^{\mu_{1} \cdots \mu_{6}}(\{\vec{l}\})=\int \frac{d \Omega_{\kappa}}{4 \pi} \int_{0}^{2 \pi} \frac{d \psi}{2 \pi} \prod_{i=1}^{6} \vec{l}_{i}^{\mu_{i}} \tag{A5}
\end{align*}
$$

where the vectors \vec{l}_{i} are linear combinations of $\left(\widehat{\kappa}_{1}, \widehat{\kappa}_{2}, \widehat{\kappa}_{3}\right)$. The functions M_{4} and M_{6} are rotationally invariant tensors of ranks 4 and 6 , and can be written as

$$
\begin{align*}
& M_{4}^{\mu_{1} \cdots \mu_{4}}(\{\vec{l}\})=\delta_{\mu_{1} \mu_{2}} \delta_{\mu_{3} \mu_{4}} x_{4}\left(\left(\vec{l}_{1}, \vec{l}_{2}\right),\left(\vec{l}_{3}, \vec{l}_{4}\right)\right)+\text { two other pairings }, \\
& M_{6}^{\mu_{1} \cdots \mu_{6}}(\{\vec{l}\})=\delta_{\mu_{1} \mu_{2}} \delta_{\mu_{3} \mu_{4}} \delta_{\mu_{5} \mu_{6}} x_{6}\left(\left(\vec{l}_{1}, \vec{l}_{2}\right),\left(\vec{l}_{3}, \vec{l}_{4}\right),\left(\vec{l}_{5}, \vec{l}_{6}\right)\right)+\text { fourteen other pairings }, \tag{A6}
\end{align*}
$$

where

$$
\begin{align*}
& x_{4}\left(\left(\vec{l}_{1}, \vec{l}_{2}\right),\left(\vec{l}_{3}, \vec{l}_{4}\right)\right)=z_{1}\left(\vec{l}_{1} \cdot \vec{l}_{2}\right)\left(\vec{l}_{3} \cdot \vec{l}_{4}\right)+z_{2}\left[\left(\vec{l}_{1} \cdot \vec{l}_{3}\right)\left(\vec{l}_{2} \cdot \vec{l}_{4}\right)+\left(\vec{l}_{1} \cdot \vec{l}_{4}\right)\left(\vec{l}_{2} \cdot \vec{l}_{3}\right)\right], \\
& \begin{aligned}
x_{6}\left(\left(\vec{l}_{1}, \vec{l}_{2}\right),\left(\vec{l}_{3}, \vec{l}_{4}\right),\left(\vec{l}_{5}, \vec{l}_{6}\right)\right)= & y_{1}\left(\vec{l}_{1} \cdot \vec{l}_{2}\right)\left(\vec{l}_{3} \cdot \vec{l}_{4}\right)\left(\vec{l}_{5} \cdot \vec{l}_{6}\right) \\
& +y_{2}\left\{\left(\vec{l}_{1} \cdot \vec{l}_{2}\right)\left[\left(\vec{l}_{3} \cdot \vec{l}_{5}\right)\left(\vec{l}_{4} \cdot \vec{l}_{6}\right)+\left(\vec{l}_{3} \cdot \vec{l}_{6}\right)\left(\vec{l}_{4} \cdot \vec{l}_{5}\right)\right]+\text { four other products }\right\} \\
& +y_{3}\left[\left(\vec{l}_{1} \cdot \vec{l}_{3}\right)\left(\vec{l}_{2} \cdot \vec{l}_{5}\right)\left(\vec{l}_{4} \cdot \vec{l}_{6}\right)+\text { seven other products }\right] .
\end{aligned} \tag{A7}
\end{align*}
$$

The coefficients in (A7) are determined by selecting special choices $\{\vec{l}\}$ and contracting \boldsymbol{M}_{4} and \boldsymbol{M}_{6} with various Kronecker symbols. Specifically,

$$
\begin{align*}
& z_{1}=\frac{4}{30}, \quad z_{2}=-\frac{1}{30} \tag{A8}\\
& y_{1}=\frac{16}{210}, y_{2}=-\frac{5}{210}, y_{3}=\frac{2}{210}
\end{align*}
$$

and the weighting functions in the table follow directly from Eqs. (A3) and (A6)-(A8).

APPENDIX B

Let $\delta\left({ }^{3} P_{J}\right)$ be an isospin-1 and orbital angular momentum- 1 scattering phase shift for the scattering of
two nucleons with center-of-mass energies $\hbar^{2} \kappa_{F}{ }^{2} / 2 m$ (m is the neutron mass). Then the quantity

$$
\begin{equation*}
\delta_{11}^{\mathrm{so}}\left(\kappa_{F}\right)=-\left[2 \delta\left({ }^{3} P_{0}\right)+3 \delta\left({ }^{3} P_{1}\right)-5 \delta\left({ }^{3} P_{2}\right)\right] / 12 \tag{B1}
\end{equation*}
$$

is approximately equal to the Born scattering phase shift in the ${ }^{3} P_{2}$ state if only spin-orbit forces were present. ${ }^{8,16}$

The ${ }^{3} P_{2}$ scattering phase shift is given by

$$
\begin{align*}
\exp \left[2 i \delta\left({ }^{3} P_{2}\right)\right]= & 1-i \pi^{3} N^{\prime}(0) \\
& \times \int d \Omega_{b} \int d \Omega_{a} Y_{1}^{1}(\widehat{b})^{*} R_{b a} Y_{1}^{1}(\widehat{a}), \tag{B2}
\end{align*}
$$

where $N^{\prime}(0)$ is the single-spin free-neutron density of states at the Fermi energy and the transition matrix element $R_{b a}$ describes scattering from the two-particle state $|a\rangle$ with particle momenta $\kappa_{F} \hat{a}$ and $-\kappa_{F} \hat{a}$ and both spins up into a state $|b\rangle$ with particle momenta $\kappa_{F} \hat{b}$ and $-\kappa_{F} \hat{b}$ and both spins up. In the Born approximation $R_{b a}$ is is given by
$R_{b a}=(2 \pi)^{-3} \Gamma_{\uparrow \uparrow, \uparrow \uparrow}^{(0)}\left(\kappa_{F} \hat{b}, 0,-\kappa_{F} \widehat{b}, 0 ;-\kappa_{F} \hat{a}, 0,-\kappa_{F} \hat{a}, 0\right)$,
where $\Gamma^{(0)}$ is the bare four-point vertex. In order to express $R_{b a}$ over the dimensionless quasiparticle-scattering amplitude T in neutron-star matter, we use the relation

$$
\begin{align*}
T\left(\hat{\kappa}_{1}, \hat{\kappa}_{2} ; \hat{\kappa}_{3}, \hat{\kappa}_{4}\right) & \equiv\left[2 N(0) / z^{2}\right] \Gamma(1,2 ; 3,4) \\
& =\left[2 N(0) / z^{2}\right] \Gamma^{(0)}(1,2 ; 3,4), \tag{B4}
\end{align*}
$$

where the second equality follows from the Born approximation for the full four-point function $\Gamma, i \equiv\left(\kappa_{F} \widehat{\kappa}_{i}, 0\right)$ for $i=1,2,3,4$, and spin arguments have been suppressed. The factor z describes the renormalization of the quasiparticle pole $(0 \leq z \leq 1)$ and $N(0)$ is the single-spin quasiparticle density of states at the Fermi energy.

From Eqs. (B2)-(B4) it follows that

$$
\begin{align*}
e^{2 i \delta\left({ }^{3} P_{2}\right)}= & 1-\frac{i z^{2} N^{\prime}(0)}{16 N(0)} \\
& \times \int d \Omega_{b} \int d \Omega_{a} Y_{1}^{1}(\widehat{b})^{*} T_{\uparrow \uparrow, \uparrow}(\hat{b},-\hat{b} ; \hat{a},-\hat{a}) Y_{1}^{1}(\widehat{a}) . \tag{B5}
\end{align*}
$$

Substituting the expression (1.7) for the dimensionless quasiparticle-scattering amplitude and using the parametrization of L explained below Eq. (2.5), we obtain

$$
\begin{equation*}
e^{2 i i_{11}^{\mathrm{so}}\left(\kappa_{F}\right)}=1+\frac{i \pi z^{2} N^{\prime}(0)}{6 N(0)}\left(a_{0}-a_{2} / 5\right) \tag{B6}
\end{equation*}
$$

recalling that in the Born approximation $\delta\left({ }^{3} P_{2}\right)$ equals $\delta_{11}^{\text {so }}$ when only spin-orbit forces are present. Neglecting the a_{2} term in the last equation and expanding the exponential on the left-hand side to terms linear in $\delta_{11}^{\text {so }}$, we obtain

$$
\begin{equation*}
a_{0} \simeq(12 / \pi) \delta_{11}^{\text {so }}\left(m^{*} / m\right)\left(1 / z^{2}\right) \tag{B7}
\end{equation*}
$$

From the nucleon-scattering data, Signell ${ }^{8}$ obtains $\delta_{11}^{\text {so }} \simeq 17^{\circ}$ for $\kappa_{F}=1.8 \mathrm{fm}^{-1}$. This value for $\delta_{11}^{\text {so }}$ and the value for the neutron effective mass ratio ${ }^{12}$ $N(0) / N^{\prime}(0) \equiv m^{*} / m \simeq 0.9$ give $a_{0} \simeq 1 / z^{2}$, and we take $a_{0}=2$ as a typical value.
*Present address: Department of Physics and Astronomy, University of Maryland, College Park, MD 20742.
${ }^{1}$ H. Brand and H. Pleiner, Phys. Rev. D 24, 3048 (1981).
${ }^{2}$ J. A. Sauls, D. L. Stein, and J. W. Serene, Phys. Rev. B 25, 967 (1982).
${ }^{3}$ P. Muzikar, J. A. Sauls, and J. W. Serene, Phys. Rev. D 21, 1494 (1980).
${ }^{4}$ J. A. Sauls and J. W. Serene, Phys. Rev. D 17, 1524 (1978).
${ }^{5}$ N. D. Mermin, Phys. Rev. A 9, 868 (1974).
${ }^{6}$ D. Rainer and J. W. Serene, Phys. Rev. B 13, 4745 (1976).
${ }^{7}$ A. A. Abrikosov and I. M. Khalatnikov, Rep. Prog. Phys. 22, 329 (1959).
${ }^{8}$ P. Signell, in The Two-Body Force in Nuclei, edited by S. M. Austin and G. M. Crawley (Plenum, New York, 1972), p. 9.
${ }^{9}$ In principle the T amplitude contains also a term $T^{(\text {ten })}$ characteristic for tensor forces since such a term appears even if the potential term in the Bethe-Salpeter equation includes only a central term and a spin-orbit term. However, the scattering data of Signell ${ }^{8}$ indicate that the tensor term in the T amplitude for the free neutron-neutron scattering is negligible. An indirect indication that the same is true in neutron matter is
that the tensor contribution to the Landau parameters are large in symmetric (isospin-zero) nuclear matter, but almost negligible in neutron (isospin-one) matter (Ref. 12).
${ }^{10}$ K. S. Dy and C. J. Pethick, Phys. Rev. 185, 373 (1969).
${ }^{11}$ S. O. Bäckman, C. G. Kälman, and O. Sjöberg, Phys. Lett. 43B, 263 (1973).
${ }^{12}$ J. A. Niskanen and J. A. Sauls, report, 1981 (unpublished).
${ }^{13}$ D. Hone, Phys. Rev. 125, 1494 (1962). Notice that the spinorbit term (1.7) does not contribute to the forward-scattering amplitude so that the FWSSR for $T=T^{(\mathrm{cen})}+T^{(\mathrm{so})}$ reduces to the FWSSR for $T^{(\mathrm{cen})}$.
${ }^{14}$ Equation (2.9) can also be obtained from Table III of Rainer and Serene ${ }^{6}$ by using the identities $\operatorname{Tr}\left(A A^{\dagger}\right)^{2}$ $=\frac{1}{2}\left|\operatorname{Tr} A^{2}\right|^{2}+\left(\operatorname{Tr} A A^{*}\right)^{2}-2 \operatorname{Tr} A^{2 * 2} \quad$ and $\quad \operatorname{Tr} A A^{\dagger}\left(A A^{\dagger}\right)^{*}$ $=\operatorname{Tr} A^{2} A^{* 2}$, which hold for any traceless and symmetric 3×3 matrix $A,{ }^{5}$ to relate the general $l=1, s=1, \Delta \beta_{i}^{\text {cen }}$ to the ${ }^{3} P_{2}$ $\Delta \bar{\beta}_{i}^{\text {cen }}$.
${ }^{15}$ M. Hoffberg, A. E. Glassgold, R. W. Richardson, and M. Ruderman, Phys. Rev. Lett. 24, 775 (1970).
${ }^{16}$ L. Heller and M. S. Sher, Phys. Rev. 182, 1031 (1969).

