Influence of strong-coupling corrections on the equilibrium phase for ${}^{3}P_{2}$ superfluid neutron-star matter

V. Z. Vulovic* and J. A. Sauls

Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08544

(Received 9 May 1983)

We calculate strong-coupling corrections to the ${}^{3}P_{2}$ neutron-star-matter Ginzburg-Landau functional including spin-orbit and central forces. Based on a two-parameter approximation for the spin-orbit scattering amplitude and typical estimates for the neutron-matter Landau parameters we conclude that the most likely equilibrium phase of ${}^{3}P_{2}$ neutron matter is described by a unitary order parameter. Better calculations of neutron-matter parameters, particularly the spin-orbit scattering amplitude, would allow a stronger conclusion.

INTRODUCTION AND SUMMARY

Recent theoretical work on superfluidity in neutron stars has concentrated on the structure and hydrodynamics of the rotating ${}^{3}P_{2}$ superfluid interior.^{1,2} The novel properties of the ${}^{3}P_{2}$ neutron superfluid that distinguish it from the more conventional s-wave superfluid are a consequence of spontaneously broken spin-orbit symmetry. In particular, the structure of vortices in the ${}^{3}P_{2}$ neutron superfluid, which play a central role in theories of the rotational dynamics of pulsars, depends implicitly on the equilibrium-phase order parameter, or condensate amplitude for the ${}^{3}P_{2}$ neutron pairs.³ The problem of determining the equilibrium-state order parameter ${}^{3}P_{2}$ pairing separates into two parts. The first part is to determine the possible phases by minimizing the general fourth-order Ginzburg-Landau (GL) free-energy functional over the space of ${}^{3}P_{2}$ order parameters for arbitrary values of the parameters that define the functional. This problem has been solved by Sauls and Serene⁴ and Mermin.⁵ The second part of the problem, which is the subject of this paper, is to calculate the parameters which define the GL functional from a microscopic theory and thereby determine the equilibrium phase. The calculation presented below extends the earlier work of Ref. 4 to include spinorbit scattering in the strong-coupling corrections to BCS theory for ${}^{3}P_{2}$ pairing. Our conclusion that the equilibrium phase of ${}^{3}P_{2}$ neutron matter is described by a unitary order parameter agrees with the tentative conclusion of Sauls and Serene; we emphasize that this conclusion is significantly strengthened by our calculations which include spin-orbit scattering. In the Introduction we briefly review the GL theory of ${}^{3}P_{2}$ pairing and pay particular attention to the relevance of corrections to the BCS theory, discuss the importance of the spin-orbit forces to the properties of neutron matter at high density, and summarize our results for the equilibrium phase diagram for ${}^{3}P_{2}$ neutron matter. The rest of the paper summarizes the calculation of strong-coupling corrections with spin-orbit scattering for ${}^{3}P_{2}$ pairing.

The GL theory of ${}^{3}P_{2}$ pairing is discussed by several authors; for our purpose we use the notation of Sauls and Serene.⁴ The order parameter $A_{\mu\nu}$ for ${}^{3}P_{2}$ pairing is a three-dimensional complex matrix which is both traceless

and symmetric. The equilibrium order parameter is determined by minimizing the homogeneous mean-field freeenergy functional over the space of ${}^{3}P_{2}$ order parameters. This functional, expanded through fourth-order in $A_{\mu\nu}$, is

$$\Delta\Omega[A] = \frac{1}{3}\alpha \operatorname{Tr} AA^* + \beta_1 |\operatorname{Tr} A^2|^2 + \beta_2 (\operatorname{Tr} AA^*)^2 + \overline{\beta}_2 \operatorname{Tr} A^2 A^{*2}.$$
(1.1)

The important result is that all the minima of this functional can be found for any set of parameters $\{\overline{\beta}_1\}$. There are three classes of minima corresponding to the three labeled regions of the phase diagram (Fig. 1). In the region

FIG. 1: The phase diagram for ${}^{3}P_{2}$ Ginzburg-Landau functional. The BCS theory predicts $p_{1}=0$ and $p_{3}=-1$ corresponding to a unitary order parameter. Strong-coupling corrections give $p_{1} < 0$ and a phase point between the half-lines A^{so} and B^{so} (with slopes of -1.6 and 4.0) in the limit when spinorbit forces dominate, or between the half-lines A^{tot} and B^{tot} (with slopes of -1.4 and 11), when we use Landau parameter values of Bäckman *et al.*¹¹ The phase point moves away from nonunitary regions 1 and 2.

©1984 The American Physical Society

1 the superfluid state (referred to as "type 1" hereafter) is described by

$$A_{\mu\nu}^{(1)} \propto (u_{\mu} + iv_{\mu})(u_{\nu} + iv_{\nu})$$
(1.2)

with $\hat{u} \cdot \hat{v} = 0$, corresponding to a condensate of neutron pairs in a pure $M_J = +2$ state along $\hat{w} = \hat{u} \times \hat{v}$. The type-1 phase is a ferromagnetic superfluid with magnetization

$$M \sim \left[\frac{\gamma_n \hbar}{2} \right] \frac{k_F^3}{3\pi^2} \left[\frac{\Delta}{E_F} \right]^2,$$

which is of the same order of magnitude as the magnetic field in the interior of neutron stars. The type-1 phase would also have interesting rotational dynamics because the order parameter allows for vortex structures without singular cores.

The type-2 phase has an order parameter

$$A_{\mu\nu}^{(2)} \propto u_{\mu}u_{\nu} + e^{i2\pi/3}v_{\mu}v_{\nu} + e^{-i2\pi/3}w_{\mu}w_{\nu} , \qquad (1.3)$$

where $(\hat{u}, \hat{v}, \hat{w})$ is an orthonormal triad. There is no net spin polarization in this phase even though time-reversal symmetry is broken by the type-2 order parameter. Because of the complex phase factors in Eq. (1.3) the type-2 phase has interesting topologically stable line defects that carry circulation; however, this phase does not allow for the coreless vortex structures associated with the type-1 phase.

In region 3 the GL free-energy functional is minimized by any real, traceless and symmetric order parameter

$$A_{\mu\nu}^{(3)} \propto u_{\mu}u_{\nu} + rv_{\mu}v_{\nu} - (1+r)w_{\mu}w_{\nu} , \qquad (1.4)$$

where $(\hat{u}, \hat{v}, \hat{w})$ is an orthonormal triad and $-1 \le r \le -\frac{1}{2}$ parametrizes the accidental degeneracy of the type-3 phases. In particular, the state with $r = -\frac{1}{2}$,

$$A_{\mu\nu}^{(3)} \propto (u_{\mu}u_{\nu} - \frac{1}{3}\delta_{\mu\nu}), \qquad (1.5)$$

describes ${}^{3}P_{2}$ Cooper pairs in a pure $M_{J}=0$ state with u as the quantization axis, and is the most probable candidate for the uniform equilibrium ${}^{3}P_{2}$ phase if a type-3 phase is energetically stable.⁴

The type-3 phases are likely candidates for the equilibrium state because the BCS theory values of the GL parameters $\{\overline{\beta}_i\}$ lie in region 3. However, relatively small corrections to the BCS parameters could stabilize the type-2 phase. Much larger modifications to the BCS-theory values could stabilize the ferromagnetic type-1 phase or destabilize all possible phases within the fourth-order GL theory.

The corrections to the BCS free-energy functional were systematically examined by Rainer and Serene.⁶ There it was shown that the free energy has an expansion in the parameter T_c/T_F , the ratio of the transition temperature to the Fermi temperature. Estimates of this ratio for the ${}^{3}P_{2}$ neutron superfluid vary between 10^{-3} and 10^{-1} .^{15,4} The BCS free energy is of the order $(T_c/T_F)^2$, while the strong-coupling corrections to the free energy are of the order $(T_c/T_F)^3 |T|^2$, where |T| is the normalized quasiparticle-scattering amplitude. The important conclusion of Rainer and Serene is that to leading order in T_c/T_F the strong-coupling corrections are given by weighted angular averages of the normal-state scattering amplitude for quasiparticles at the Fermi surface. Thus, with a good approximation for the quasiparticle-scattering amplitude the leading-order strong-coupling corrections can be calculated. The form of the dimensionless quasiparticle-scattering amplitude $T_{\alpha\beta,\gamma\rho}(\hat{\kappa}_1,\hat{\kappa}_2;\hat{\kappa}_3,\hat{\kappa}_4)$ is dictated by the microscopic forces among particles. When only central forces are present the T amplitude has the form

$$T^{(\text{cen})}_{\alpha\beta,\gamma\rho}(\hat{\kappa}_{1},\hat{\kappa}_{2};\hat{\kappa}_{3},\hat{\kappa}_{4}) = T^{(s)}(\theta,\phi)\delta_{\alpha\gamma}\delta_{\beta\rho} + T^{(a)}(\theta,\phi)\vec{\sigma}_{\alpha\gamma}\cdot\vec{\sigma}_{\beta\rho}, \qquad (1.6)$$

where (θ, ϕ) are the Abrikosov-Khalatnikov⁷ angles for four unit vectors $\hat{\kappa}_1$, $\hat{\kappa}_2$, $\hat{\kappa}_3$, $\hat{\kappa}_4$ for the directions of the quasiparticle momenta which satisfy the momentum conservation law $\hat{\kappa}_1 + \hat{\kappa}_2 = \hat{\kappa}_3 + \hat{\kappa}_4$. Specifically, $\cos\theta = \hat{\kappa}_1 \cdot \hat{\kappa}_2$ and $\cos\phi = \hat{\kappa}_1 \cdot (\hat{\kappa}_3 - \hat{\kappa}_4)/(1 - \hat{\kappa}_1 \cdot \hat{\kappa}_2)$. Nucleon-nucleon scattering phase-shift data at laboratory energies $E_L \ge 300$ MeV (corresponding to Fermi energies $E_F \ge 75$ MeV) suggest that at the densities $\rho \ge 5 \cdot 10^{13}$ g/cm³ (i.e., inside neutron stars) spin-orbit forces between neutron excitations at the Fermi surface are large, while central forces are smaller and repulsive.⁸ Thus, we suggest that the *T* amplitude at high densities in neutron-star matter is dominated by a spin-orbit scattering term

$$T^{(\text{so})}_{\alpha\beta,\gamma\rho}(\hat{\kappa}_1,\hat{\kappa}_2;\hat{\kappa}_3,\hat{\kappa}_4) = L(q,q')\hat{q} \times \hat{q}' \cdot (\delta_{\alpha\gamma}\vec{\sigma}_{\beta\rho} + \vec{\sigma}_{\alpha\gamma}\delta_{\beta\rho}) .$$

$$(1.7)$$

Here $\vec{q} = \vec{\kappa}_3 - \vec{\kappa}_1$ and $\vec{q}' = \vec{\kappa}_4 - \vec{\kappa}_1$ are the momentum transfers and $\vec{\kappa}_i = \kappa_F \hat{\kappa}_i$, i=1,2,3,4. In a potential approximation the function L(q,q') is given by

$$L(q,q') = \frac{i}{4} \left[q' \frac{d}{dq} \widetilde{f}(q) + q \frac{d}{dq'} \widetilde{f}(q') \right], \qquad (1.8)$$

where f(q) is proportional to the Fourier transform of the radial factor V(r) in the spin-orbit interaction $V(r)\vec{L}\cdot\vec{S}/\hbar^2$.

The total T amplitude is given by the sum of $T^{(cen)}$ and $T^{(so)}$ in Eqs. (1.6) and (1.7).⁹ The strong-coupling corrections $\Delta \overline{\beta}_i$ in the GL free-energy functional are weighted angular averages of the total T amplitude. In order to evaluate these quantities we use the s-p wave approxima-tion of Dy and Pethick,¹⁰ which relates $T^{(cen)}$ to the l=0,1 Landau-Fermi liquid parameters, while for $T^{(so)}$ it is most convenient to expand $(d/dq)\tilde{f}(q)$ in the Legendre polynomials of $x_2 = \hat{\kappa}_1 \cdot \hat{\kappa}_2 [q = 2\kappa_F ((1 - x_2)/2)^{1/2}]$. After retaining only the l=0,1 terms in $(d/dq)\tilde{f}(q)$, the resulting expressions for $\Delta\beta_i$ are functions of three Landau parameters A_0^s , A_0^a , and A_1^s , and two spin-orbit parameters a_0 and a_1 . When spin-orbit forces dominate we show that the corrections to the BCS theory do not lead to nonunitary phases; spin-orbit scattering moves the phase point away from regions 1 and 2. Very large values of T_c/T_F and the spin-orbit coupling strength may lead to breakdown of the stability conditions on the fourth-order GL functional.

To discuss the phase point $(\overline{\beta}_1/\overline{\beta}_2,\overline{\beta}_3/\overline{\beta}_2)$ with both central and spin-orbit scattering included, we fix $T^{(cen)}$ with

II. CALCULATION AND ANALYSIS OF STRONG-COUPLING CORRECTIONS

The GL functional is a functional of the off-diagonal self-energy $\Delta(\hat{\kappa})$, which is related to the 3×3-matrix order parameter by

$$\Delta(\hat{\kappa}) = i \, \vec{\sigma} \, \sigma^2 \cdot \vec{\Delta}(\hat{\kappa}) , \qquad (2.1)$$
$$\Delta_{\mu}(\hat{\kappa}) = \sum_{j=1}^3 A_{\mu j}(\hat{\kappa})_j .$$

The GL functional can be written as the sum of the BCS term plus strong-coupling corrections,

$$\Delta\Omega_{\rm GL}[\Delta] = \Delta\Omega_{\rm BCS}[\Delta] + \Delta\phi_{\rm SC}[\Delta] , \qquad (2.2)$$

where $\Delta\phi_{\rm SC}$ has a diagrammatic expansion. The leading terms for $\Delta\phi_{\rm SC}$ are determined by the normal-state quasiparticle-scattering amplitude and T_c/T_F .⁶ Using the

notation of Rainer and Serene,⁶
$$\Delta\phi_{SC} = \Delta\phi_B + \Delta\phi_C + \Delta\phi_D + \Delta\phi_F$$
, the expressions for $\Delta\phi_{\alpha}$ ($\alpha = B, C, D, F$) are calculated with the scattering amplitude $T = T^{(cen)} + T^{(so)}$ given by Eqs. (1.6) and (1.7) and are listed in Appendix A. After doing the spin traces the resulting expressions contain angular integrals of the form

$$\int \frac{d\Omega_1}{4\pi} \int \frac{d\Omega_2}{4\pi} \int \frac{d\Omega_3}{4\pi} \delta(||\hat{\kappa}_1 + \hat{\kappa}_2 - \hat{\kappa}_3|| - 1) \\ \times A(\hat{\kappa}_1, \hat{\kappa}_2, \hat{\kappa}_3) B(\hat{\kappa}_1, \hat{\kappa}_2, \hat{\kappa}_3) , \qquad (2.3)$$

where $A(\hat{\kappa}_1,\hat{\kappa}_2,\hat{\kappa}_3)$ depends only on $T^{(\alpha)} = T^{(\alpha)}(\theta,\phi)$, $\tilde{T}^{(\alpha)} = T^{(\alpha)}(\tilde{\theta},\tilde{\phi})$, L = L(q,q'), and $\tilde{L} = L(q,\kappa)$ with $\alpha = s$, $a, \vec{\kappa} = \vec{\kappa}_1 + \vec{\kappa}_2$, and $(\tilde{\theta},\tilde{\phi})$ are Abrikosov-Khalatnikov angles for $(\hat{\kappa}_3, -\hat{\kappa}_2,\hat{\kappa}_1, -\hat{\kappa}_4)$. All these amplitudes are functions of (θ,ϕ) . The function $B(\hat{\kappa}_1,\hat{\kappa}_2,\hat{\kappa}_3)$ contains products of different energy-gap vectors $\Delta_{\mu}(\hat{\kappa}_i)$ and projections of \hat{q}, \hat{q}' , and $\hat{\kappa}$, and therefore it depends on other variables besides (θ,ϕ) . In Appendix A we integrate out these extra variables expressing $\Delta\phi_{\alpha}$ in terms of weighted averages over the angles (θ,ϕ) . Our result for the strong-coupling corrections

$$\Delta \overline{\beta}_i = \Delta \overline{\beta}_i^{B+C} + \Delta \overline{\beta}_i^{D} + \Delta \overline{\beta}_i^{C}$$

in terms of these averages is

$$\begin{split} \Delta \bar{\beta}_{i}^{B+C} &= -\eta \frac{6.84}{16} \langle \bar{w}_{i}^{B+C} T^{(s)2} + \bar{v}_{i}^{B+C} T^{(a)2} + \bar{u}_{i}^{B+C} L^{2} + \bar{\chi}_{i}^{(s)B+C} i L T^{(s)} + \bar{\chi}_{i}^{(a)B+C} i L T^{(a)} \rangle , \\ \Delta \beta_{i}^{D} &= -\eta \frac{10.15}{4} \langle \bar{w}_{i}^{D} (T^{(s)} \tilde{T}^{(s)} + T^{(a)} \tilde{T}^{(a)}) + \bar{v}_{i}^{D} (T^{(s)} \tilde{T}^{(a)} + T^{(a)} \tilde{T}^{(s)}) + \bar{u}_{i}^{D} L \tilde{L} + \bar{\chi}_{i}^{(s)D} i L \tilde{T}^{(s)} + \bar{\chi}_{i}^{(a)D} i L \tilde{T}^{(a)} \rangle , \qquad (2.4) \\ \Delta \bar{\beta}_{i}^{F} &= -\eta \frac{30.44}{16} \langle \bar{w}_{i}^{F} T^{(s)2} + \bar{v}_{i}^{F} T^{(a)2} + \bar{u}_{i}^{F} L^{2} + \bar{\chi}_{i}^{(s)F} i L T^{(s)} + \bar{\chi}_{i}^{(a)F} i L T^{(a)} \rangle . \end{split}$$

TABLE I. The weighting functions $\overline{w}, \overline{v}, \overline{u}, \overline{\chi}^{(s)(a)}$ expressed over momentum-transfer variables t_2 and t_3 , where $x' = [(1-t_2-t_3)t_3]^{1/2}$.

	B+C	D	F
\overline{w}_1	$10(t_2 - t_2^2)$	$-1+2t_2+6(t_3-t_2t_3-t_3^2)$	$20(t_2-t_2^2)-40t_2t_3$
\overline{w}_2	$8 - 8(t_2 - t_2^2)$	$-4+8t_2+4(t_3-t_2t_3-t_3^2)$	$8 - 8(t_2 - t_2^2) - 8(t_3 - t_3^2) - 32t_2t_3$
\overline{w}_3	$-8-12(t_2-t_2^2)$	$2-4t_2-12(t_3-t_2t_3-t_3^2)$	$-8 - 52(t_2 - t_2^2) + 28(t_3 - t_3^2) + 112t_2t_3$
\overline{v}_1	$4-34(t_2-t_2^2)$	$1 - 2t_2 - 16(t_3 - t_2t_3 - t_3^2)$	$8-68(t_2-t_2^2)-48(t_3-t_3^2)+168t_2t_3$
\overline{v}_2	$8 - 8(t_2 - t_2^2)$	$-4+8t_2+4(t_3-t_2t_3-t_3^2)$	$-8+8(t_2-t_2^2)+8(t_3-t_3^2)+32t_2t_3$
\overline{v}_3	$60(t_2-t_2^2)$	$6 - 12t_2 + 24(t_3 - t_2t_3 - t_3^2)$	$24 + 36(t_2 - t_2^2) - 44(t_3 - t_3^2) - 176t_2t_3$
\overline{u}_1	$(-21t_2-21t_3+28t_2t_3)/7$	$x'(1-\frac{4}{7}t_2)$	$[-16+72(t_2+t_3)-48(t_2^2+t_3^2)-248t_2t_3]/7$
\overline{u}_2	$(-96+96t_2+16t_3-120t_2^2)$		
w 2	$-96t_2t_3 - 40t_3^2)/7$	$x'(-\frac{8}{7}t_2)$	$[16 - 16(t_2 + t_3) + 48(t_2^2 + t_3^2) - 256t_2t_3]/7$
\overline{u}_{1}	$(24+18t_2+66t_3+72t_2)^2$		
	$+24t_2t_3+24t_3^2)/7$	x'(-2)	$[16 - 128(t_2 + t_3) + 48(t_2^2 + t_3^2) + 752t_2t_3]/7$
$\overline{\chi}_{1}^{(s)}$	$(12-24t_2)(t_2t_2)^{1/2}$	$[16-16(t_2+t_3)](t_2t_3)^{1/2}$	$(-20+8t_2+32t_3)(t_2t_3)^{1/2}$
$\frac{1}{\overline{Y}} \frac{(s)}{s}$	0	$[-16(t_2+t_3)](t_2t_3)^{1/2}$	$(-32t_2+32t_3)(t_2t_3)^{1/2}$
$\overline{\chi}_{3}^{(s)}$	$(-24+48t_2)(t_2t_3)^{1/2}$	$[-20+48(t_2+t_3)](t_2t_3)^{1/2}$	$(40+16t_2-96t_3)(t_2t_3)^{1/2}$
$\overline{\chi}_{1}^{(a)}$	$(-12+24t_2)(t_2t_2)^{1/2}$	$[-26+32(t_2+t_3)](t_2t_3)^{1/2}$	$(60-72t_2-48t_3)(t_2t_3)^{1/2}$
$\frac{1}{Y} \frac{1}{a}$	0	$[-16(t_2+t_2)](t_2t_2)^{1/2}$	$(-32t_2+32t_3)(t_2t_3)^{1/2}$
$\frac{1}{\overline{\chi}}_{3}^{(a)}$	$(24-48t_2)(t_2t_3)^{1/2}$	$[52-48(t_2+t_3)](t_2t_3)^{1/2}$	$(-124+176t_2+72t_3)(t_2t_3)^{1/2}$

The coefficient $\eta \equiv N(0)(30k_BT_cv_Fp_F)^{-1}$ is related to the BCS value of $\overline{\beta}_2$ by $\eta = 1.173(T_c/T_F)\overline{\beta}_2^{BCS}$ and the strong-coupling GL coefficients are defined by

$$\Delta\phi_{\alpha} = \Delta\overline{\beta}_{i}^{\alpha} |\operatorname{Tr}A^{2}|^{2} + \Delta\overline{\beta}_{2}^{\alpha} (\operatorname{Tr}AA^{*})^{2} + \Delta\overline{B}_{3}^{\alpha} \operatorname{Tr}A^{2}A^{*2},$$

while $\Delta \overline{\beta}_{i}^{B+C} = \Delta \overline{\beta}_{i}^{B} + \Delta \overline{\beta}_{i}^{C}$ and

$$\langle \cdots \rangle \equiv \int_0^1 d(\cos\theta/2) \int_0^{2\pi} \frac{d\phi}{2\pi} (\cdots) .$$

In Table I we give weighting functions \overline{w} , \overline{v} , \overline{u} , $\overline{\chi}^{(s),(a)}$ expressed in terms of the momentum-transfer variables $t_2 = (1-x_2)/2$ and $t_3 = (1-x_3)/2$, where

$$x_2 = \hat{\kappa}_1 \cdot \hat{\kappa}_3 = \cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2} \cos \phi$$
,

and

$$x_3 = \hat{\kappa}_1 \cdot \hat{\kappa}_4 = \cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2} \cos \phi$$
.

To complete the calculation we need a reasonable approximation for the scattering amplitudes. For the central force we use the s-p wave approximation of Dy and Pethick.¹⁰ In this case $T^{(\alpha)}$ and $\tilde{T}^{(\alpha)}$ become

$$T^{(s)} = A_0^s + A_1^s + t_2(-3A_0^s - 3A_0^a - 2A_1^s) + t_3(-2A_1^s) ,$$

$$T^{(a)} = -A_0^s - A_1^s + t_2(A_0^s + A_0^a + 2A_1^s) + t_3(2A_0^s + 2A_0^a + 2A_1^s) ,$$

$$\widetilde{T}^{(s)} = A_0^s - A_1^s + t_2(-3A_0^s - 3A_0^a) + t_3(2A_1^s) ,$$

$$\widetilde{T}^{(a)} = A_0^s + 2A_0^a + A_1^s + t_2(-A_0^s - A_0^a) + t_3(-2A_0^s - 2A_0^a - 2A_1^s) .$$
(2.5)

We have used the forward-scattering sum rule (FWSSR)¹³ to write $A_1^a = -(A_0^s + A_1^s + A_0^a)$ in the *s-p* wave approximation. We use a potential approximation for the spinorbit amplitudes L and \tilde{L} and parametrize

$$\frac{d}{dq}\widetilde{f}(q) = -\frac{q}{k_F^2}\frac{d}{dx_2}\widetilde{f}(q) = \frac{q}{k_F^2}\sum_{l=0}^{\infty}a_lP_l(x_2)$$

and similarly for $\tilde{f}(q')$ and $\tilde{f}(\kappa)$; P_l is a Legendre polynomial of order l. The effective spin-orbit potential $\tilde{f}(q)$ is real and therefore so are all a_l 's. Although little is known about the spin-orbit interaction in neutron matter, we assume that the effective potential V(r) is very attractive at short distances, while for $r \ge 1$ fm V(r) is assumed unimportant. Numerical estimates of $\{a_l\}$ based on several short-range attractive potentials for a Fermi wave vector $\kappa_F = 1.8 \text{ fm}^{-1}$, which is typical for neutron-star interiors, show that $a_0 > 0$, $0 \le a_1 \le a_0$ with a typical value $a_1 \sim a_0/2$, and $|a_l| \le a_0/5$ for $l \ge 2$. In general, once $a_1 \notin [\sim 0, a_0]$ which happens for potentials of longer range (or at larger κ_F 's) a_l 's with $l \ge 2$ also become of order a_0 and our approximation breaks down. With these assumptions, the spin-orbit amplitudes are approximately

$$L = i(t_2t_3)^{1/2} \sum_{l=0}^{\infty} a_l [P_l(x_2) + P_l(x_3)]$$

$$\approx 2i(t_2t_3)^{1/2} [a_0 + a_1(1 - t_2 - t_3)],$$

$$\widetilde{L} = i[(1 - t_2 - t_3)t_2]^{1/2} \sum_{l=0}^{\infty} a_l [P_l(x_2) + P_l(-x_1)]$$

$$\approx 2i[(1 - t_2 - t_3)t_2]^{1/2} [a_0 + a_1t_3].$$
(2.6)

Inspection of Eqs. (2.4)–(2.6) and the weighting functions given in Table I shows that $\Delta \overline{\beta}_i^{\alpha}$ are linear combinations of basic angular averages $C_{mn} = \langle t_2^m t_3^n \rangle$ for $m, n = 1, 2, \ldots$, which can be easily evaluated. We then find that the spin-orbit contribution to $\Delta \overline{\beta}_i$ is

$$\Delta \overline{\beta}_{1}^{so} = -\eta a_{0}^{2} (1.061 + 0.104x + 0.008x^{2}) ,$$

$$\Delta \overline{\beta}_{2}^{so} = -\eta a_{0}^{2} (2.491 + 0.517x + 0.066x^{2}) , \qquad (2.7)$$

$$\Delta \overline{\beta}_{3}^{so} = \eta a_{0}^{2} (3.863 + 0.472x + 0.040x^{2}) ,$$

where $x = a_1/a_0$. The cross products between the spinorbit and the central terms give the following contribution to $\Delta \overline{\beta}_i$:

$$\Delta \bar{\beta}_{i}^{so/c} = -\eta a_{0}(-1.29A_{0}^{s} - 5.73A_{0}^{a} - 0.71A_{1}^{s}) -\eta a_{1}(0.09A_{0}^{s} - 0.61A_{0}^{a} + 0.21A_{1}^{s}) ,$$
$$\Delta \bar{\beta}_{2}^{so/c} = \eta a_{0}[6.18(A_{0}^{s} + A_{0}^{a})] +\eta a_{1}[0.37(A_{0}^{s} + A_{0}^{a})] , \qquad (2.8)$$
$$\Delta \bar{\beta}_{3}^{so/c} = -\eta a_{0}(8.80A_{0}^{s} + 17.70A_{0}^{a} + 1.34A_{1}^{s})$$

$$-\eta a_1(-0.15A_0^s+1.63A_0^a+0.17A_1^s)$$
.

Finally, the central-force contributions to the $\Delta \overline{\beta}_i$, calculated in the *s-p* wave approximation with A_1^a eliminated by the forward-scattering sum rule, are¹⁴

EQUILIBRIUM PHASE FOR ${}^{3}P_{2}$ SUPERFLUID NEUTRON-STAR . . .

$$\Delta \overline{\beta}_{1}^{\text{cen}} = -\eta [4.47(A_{0}^{s})^{2} + 26.07(A_{0}^{a})^{2} + 8.87(A_{1}^{s})^{2} + 19.83A_{0}^{s}A_{0}^{a} + 11.07A_{0}^{s}A_{1}^{s} + 27.40A_{0}^{a}A_{0}^{s}A_{1}^{s}],$$

$$\Delta \overline{\beta}_{2}^{\text{cen}} = -\eta [11.73(A_{0}^{s})^{2} + 17.40(A_{0}^{a})^{2} + 2.80(A_{1}^{s})^{2} + 23.20A_{0}^{s}A_{0}^{a} + 3.21A_{0}^{s}A_{1}^{s} + 6.99A_{0}^{a}A_{1}^{s}],$$

$$\Delta \overline{\beta}_{3}^{\text{cen}} = \eta [3.76(A_{0}^{s})^{2} + 2.83(A_{0}^{a})^{2} - 15.20(A_{1}^{s})^{2} + 8.68A_{0}^{s}A_{0}^{a} - 16.39A_{0}^{s}A_{1}^{s} - 20.87A_{0}^{a}A_{1}^{s}].$$

(2.9)

To analyze the position of the phase point (p_1,p_3) , where $p_1 \equiv \overline{\beta}_1/\overline{\beta}_2$ and $p_3 \equiv \overline{\beta}_3/\overline{\beta}_2$, it is convenient to normalize the strong-coupling parameters to $\overline{\beta}_2^{BCS}$ by writing $b_i \equiv \Delta \overline{\beta}_i/\overline{\beta}_2^{BCS}$. The coordinates of the phase point in Fig. 1 are then $p_1 = b_1/(1+b_2)$ and $p_3 = (b_3 - 1)/(1+b_2)$. First we consider the case of very strong spin-orbit forces when $\Delta \overline{\beta}_i$ can be approximated by $\Delta \overline{\beta}_i^{so}$.

From Eq. (2.7), $\Delta \overline{\beta}_{i}^{so}$ is negative for any value of $x = a_1/a_0$, which means that the phase point moves away from region 2. The slope of the line which connects the phase point (p_1, p_3) with the BCS phase point (0, -1) is given by $S = (b_2 + b_3)/b_1$ and depends only on x if we neglect the central terms. The minimum slope S = -1.55 > -2 for x = -2.64 shows that region 1 is also excluded. Finally, we check if strong spin-orbit scattering violates the stability conditions on the fourthorder GL free-energy functional. In our case $\overline{\beta}_1 < 0$ and S > -2 imply that the relevant stability requirements are $\overline{\beta}_2 > 0$ and $p_3 > -2(p_1+1)$. The first condition $b_2 > -1$ for typical values $a_0=2$ (see Appendix B), $x = \frac{1}{2}$, and $T_c/T_F = 4 \times 10^{-3}$ is satisfied by a factor of 20. The second condition gives $a_0^2 T_c / T_F \le 0.13$ using $x = \frac{1}{2}$; for the above estimates of a_0 and T_c/T_F this inequality is satisfied by a factor of 8. However, a_0 and T_c/T_F are not well known. A transition temperature as high as $T_c/T_F \sim 10^{-1}$ is not ruled out. A violation of the stability conditions presumably implies that higher-order terms in the GL functional determine the equilibrium phase.

To estimate $\Delta \overline{\beta}_i$ with both spin-orbit and central forces included, we use the available calculations of neutronmatter Fermi liquid parameters.^{11,12} For $\kappa_F = 1.8$ fm⁻¹, from Bäckman *et al.*¹¹ follows $A_0^s = 0.14$, $A_0^a = 0.50$, and $A_1^s = -0.57$, which gives

$$\Delta \overline{\beta}_{1} = (-2.560 + 3.101a_{0} - 1.245a_{0}^{2}) \frac{T_{c}}{T_{F}} \overline{\beta}_{2}^{\text{BCS}} ,$$

$$\Delta \overline{\beta}_{2} = (-5.707 + 4.643a_{0} - 2.922a_{0}^{2}) \frac{T_{c}}{T_{F}} \overline{\beta}_{2}^{\text{BCS}} , \qquad (2.10)$$

$$\Delta \overline{\beta}_{3} = (4.347 - 10.932a_{0} + 4.531a_{0}^{2}) \frac{T_{c}}{T_{F}} \overline{\beta}_{2}^{BCS} .$$

We have neglected the a_1 terms since they are an order of magnitude smaller than the a_0 terms. $\Delta \overline{\beta}_1$ given by Eq. (2.10) is always negative which implies that the phase point moves away from region 2. The minimum slope $S(-5.4) \cong -1.43 > -2$ shows the phase point also moves away from region 1. For values of a_0 between $\frac{1}{2}$ and 2 the slope is large and positive $(S \sim 10)$ and the phase point may cross the $p_3 = -2(p_1+1)$ stability line if T_c/T_F is sufficiently large. For $a_0=2$ and $T_c/T_F=4\times 10^{-3}$ (a typical estimate for this ratio^{15,4}) the phase point is close to the BCS phase point $(p_1 \cong -5.5 \times 10^{-3}, p_3+1 \cong -3.1 \times 10^{-2})$.

The qualitative results are rather insensitive on particular values of Landau parameters. This suggests that spin-orbit scattering will not stabilize a nonunitary ${}^{3}P_{2}$ phase. It also appears unlikely that strong spin-orbit scattering violates the stability conditions of the fourthorder GL functional. Better estimates of T_{c} and spinorbit scattering amplitudes would decide both questions.

ACKNOWLEDGMENT

This research was supported in part by the U.S. National Science Foundation under Grant No. NSF DMR802063.

APPENDIX A

Let $\Delta \phi_{\alpha} (\alpha = B, C, D, F)$ be the free-energy contribution of diagram α of Rainer and Serene.⁶ Near T_c , $\Delta \phi_{\alpha}$ is fourth order in $A_{\mu\nu}$ and has the form

$$\Delta \phi_{\alpha} = f_{\alpha} \frac{N(0)}{k_{B} T_{C} v_{F} P_{F}} \times \int \frac{d\Omega_{1}}{4\pi} \int \frac{d\Omega_{2}}{4\pi} \int \frac{d\Omega_{3}}{4\pi} \delta(||\hat{\kappa}_{4}|| - 1) S_{\alpha}(\hat{\kappa}_{1}, \hat{\kappa}_{2}, \hat{\kappa}_{3}).$$
(A1)

The constants f_{α} come from frequency sums and combinational coefficients and are given by $f_B = \frac{1}{2}f_c$ $\approx -6.84/16$, $f_D \approx 10.15/2$, and $f_F \approx -30.44/8$. The S_{α} are functions of $\Delta(\hat{\kappa}_i)$ and $\overline{\Delta}(\hat{\kappa}_i) \equiv -i\sigma^2 \vec{\sigma} \cdot \vec{\Delta}(\hat{\kappa}_i)^*$,

$$S_{B} = \frac{1}{4} T_{\alpha\beta,\gamma\rho} (\text{set } 1) T_{\gamma\rho,a'\beta'} (\text{set } 2) (\Delta(\hat{\kappa}_{1})\overline{\Delta}(\hat{\kappa}_{1}))_{a'a} (\Delta(\hat{\kappa}_{2})\overline{\Delta}(\hat{\kappa}_{2}))_{\beta'\beta} ,$$

$$S_{C} = \frac{1}{4} T_{\alpha\beta,\gamma\rho} (\text{set } 1) T_{\gamma'\rho,a'\beta} (\text{set } 2) (\Delta(\hat{\kappa}_{1})\overline{\Delta}(\hat{\kappa}_{1}))_{a'a} (\Delta(\hat{\kappa}_{3})\overline{\Delta}(\hat{\kappa}_{3}))_{\gamma\gamma'} ,$$

$$S_{D} = \frac{1}{4} T_{\alpha\beta,\gamma\rho} (\text{set } 1) T_{\gamma\beta',a'\rho'} (\text{set } 3) (\Delta\hat{\kappa}_{1})\overline{\Delta}(\hat{\kappa}_{1}))_{a'a} \Delta(\hat{\kappa}_{4})_{\rho\rho'} \overline{\Delta}(\hat{\kappa}_{2})_{\beta\beta'} ,$$

$$S_{F} = \frac{1}{4} T_{\alpha\beta,\gamma\rho} (\text{set } 1) T_{\alpha'\beta',\gamma'\rho'} (\text{set } 4) \overline{\Delta}(\hat{\kappa}_{1})_{aa'} \overline{\Delta}(\hat{\kappa}_{2})_{\beta\beta'} \Delta(\hat{\kappa}_{3})_{\gamma\gamma'} \Delta(\hat{\kappa}_{4})_{\rho\rho'} ,$$
(A2)

where set 1, set 2, set 3, and set 4 denote ordered quadruples of unit vectors $(\hat{\kappa}_1, \hat{\kappa}_2; \hat{\kappa}_3, \hat{\kappa}_4)$, $(\hat{\kappa}_3, \hat{\kappa}_4; \hat{\kappa}_1, \hat{\kappa}_2)$, $(\hat{\kappa}_1, -\hat{\kappa}_2; \hat{\kappa}_3, -\hat{\kappa}_4)$, and $(-\hat{\kappa}_1, -\hat{\kappa}_2; -\hat{\kappa}_3, -\hat{\kappa}_4)$. Summation over repeated spin indices is assumed. After performing the spin sums in (A2) and using the invariance of the domain of integration in (A1) under $\hat{\kappa}_1 \leftrightarrow \hat{\kappa}_2$, $\hat{\kappa}_3 \leftrightarrow \hat{\kappa}_4$, $(\hat{\kappa}_3, -\hat{\kappa}_2; \hat{\kappa}_1, -\hat{\kappa}_4) \leftrightarrow (\hat{\kappa}_1, \hat{\kappa}_2; \hat{\kappa}_3, \hat{\kappa}_4)$, and the antisymmetry property of the T amplitude, we express $\Delta \phi_{\alpha}$ in the form (A1) with S_{α} now given by $S_{B} = (||\vec{\Delta}_{1}||^{2}||\vec{\Delta}_{2}||^{2} - \vec{u}_{1} \cdot \vec{u}_{2})T^{(s)2} + (3||\vec{\Delta}_{1}||^{2}||\vec{\Delta}_{2}||^{2} + 5\vec{u}_{1} \cdot \vec{u}_{2})T^{(a)2} + 2[(\vec{u}_{1} \cdot \hat{\kappa})(\vec{u}_{2} \cdot \hat{\kappa}) - ||\vec{\Delta}_{1}||^{2}||\vec{\Delta}_{2}||^{2}]L^{2},$

(A3)

$$\begin{split} S_{C} &= (||\vec{\Delta}_{1}||^{2}||\vec{\Delta}_{3}||^{2} - \vec{u}_{1} \cdot \vec{u}_{3})T^{(s)2} + (3||\vec{\Delta}_{1}||^{2}||\vec{\Delta}_{3}||^{2} + \vec{u}_{1} \cdot \vec{u}_{3})T^{(a)2} + 2[(\vec{u}_{1} \cdot \hat{\kappa})(\vec{u}_{3} \cdot \hat{\kappa}) - ||\vec{\Delta}_{1}||^{2}||\vec{\Delta}_{3}||^{2}]L^{2} \\ &+ 2[(\vec{u}_{1} \times \vec{u}_{3}) \cdot \hat{q} \times \hat{q}']iL(T^{(s)} - T^{(a)}) , \\ S_{D} &= (||\vec{\Delta}_{1}||^{2}\Delta_{42})(T^{(s)}\tilde{T}^{(s)} + T^{(a)}\tilde{T}^{(a)}) + (-\vec{u}_{1} \cdot \vec{u}_{42})(T^{(s)}\tilde{T}^{(a)} + T^{(a)}\tilde{T}^{(s)}) \\ &+ \{||\vec{\Delta}_{1}||^{2}[(\vec{\Delta}_{4} \cdot \hat{\kappa})(\vec{\Delta}_{2}^{*} \cdot \hat{q}') + (\vec{\Delta}_{4} \cdot \hat{q}')(\vec{\Delta}_{2}^{*} \cdot \hat{\kappa})] + (\vec{u}_{1} \cdot \hat{q}')(\vec{u}_{42} \cdot \hat{\kappa}) + (\vec{u}_{1} \cdot \hat{\kappa})(\vec{u}_{42} \cdot \hat{q}') + \Delta_{42}\vec{u}_{1} \cdot \hat{\kappa} \times \hat{q}'\}L\tilde{L} \\ &+ \{[(||\vec{\Delta}_{1}||^{2} + ||\vec{\Delta}_{3}||^{2})\vec{u}_{42} + \Delta_{42}(\vec{u}_{1} + \vec{u}_{3})] \cdot \hat{q} \times \hat{q}'\}iL\tilde{T}^{(s)} \\ &+ \{[(||\vec{\Delta}_{1}||^{2} + ||\vec{\Delta}_{3}||^{2})\vec{u}_{42} + \vec{\Delta}_{42}(\vec{u}_{1} + \vec{u}_{3}) - 2(\vec{\Delta}_{4} \cdot \vec{u}_{1})\vec{\Delta}_{2}^{*} - 2(\vec{\Delta}_{2}^{*} \cdot \vec{u}_{3})\vec{\Delta}_{4}] \cdot \hat{q} \times \hat{q}'\}iL\tilde{T}^{(a)} , \\ S_{F} &= (\Delta_{31}\Delta_{42} + \Delta_{32}\Delta_{41} - \Delta_{34}\Delta_{12}^{*})T^{(s)2} + (-5\Delta_{31}\Delta_{42} + 3\Delta_{32}\Delta_{41} + 5\Delta_{34}\Delta_{12}^{*})T^{(a)2} \\ &+ 2[\Delta_{31}\Delta_{42} - 2\Delta_{31}(\vec{\Delta}_{4} \cdot \hat{\kappa})(\vec{\Delta}_{2}^{*} \cdot \hat{\kappa}) - (\vec{u}_{31} \cdot \hat{\kappa})(\vec{u}_{42} \cdot \hat{\kappa})]L^{2} + 4[\Delta_{42}(\vec{u}_{31} \cdot \hat{q} \times \hat{q}')]iLT^{(s)} \\ &+ 4\{[\Delta_{42}\vec{u}_{31} - (\vec{\Delta}_{4} \cdot \vec{u}_{31})\vec{\Delta}_{2}^{*} - (\vec{\Delta}_{2}^{*} \cdot \vec{u}_{31})\vec{\Delta}_{4}] \cdot \hat{q} \times \hat{q}'\}iLT^{(a)} . \end{split}$$

The notation in Eqs. (A3) is $\vec{\Delta}_i = \vec{\Delta}(\hat{\kappa}_i)$, $\vec{u}_i = \vec{\Delta}_i \times \vec{\Delta}_i^*$ for i = 1, 2, 3, 4, $\Delta_{ij} = \vec{\Delta}_i \cdot \vec{\Delta}_j^*$, and $\vec{u}_{ij} = \vec{\Delta}_i \times \vec{\Delta}_j^*$ for i = 3, 4 and j = 1, 2, 3, 4, $\Delta_{12} = \vec{\Delta}_i^* \cdot \vec{\Delta}_j^*$ and $\Delta_{34} = \vec{\Delta}_3 \cdot \vec{\Delta}_4$. Also

$$T^{(\alpha)} = T^{(\alpha)}(\theta, \phi) = T^{(\alpha)}(\hat{\kappa}_1, \hat{\kappa}_2; \hat{\kappa}_3, \hat{\kappa}_4) ,$$

$$\tilde{T}^{(\alpha)} = T^{(\alpha)}(\tilde{\theta}, \tilde{\phi}) = T^{(\alpha)}(\hat{\kappa}_3, -\hat{\kappa}_2; \hat{\kappa}_1, -\hat{\kappa}_4)$$

for $\alpha = s, a$, and L = L(q,q'), $\widetilde{L} = L(q,\kappa)$.

In order to simplify these expressions for $\Delta \phi_{\alpha}$ we use the identity

$$\int \frac{d\Omega_1}{4\pi} \int \frac{d\Omega_2}{4\pi} \int \frac{d\Omega_3}{4\pi} \delta(||\hat{\kappa}_1 + \hat{\kappa}_2 - \hat{\kappa}_3|| - 1) = \frac{1}{2} \int_0^1 d(\cos\theta/2) \int_0^{2\pi} \frac{d\phi}{2\pi} \int \frac{d\Omega_\kappa}{4\pi} \int_0^{2\pi} \frac{d\psi}{2\pi} \,. \tag{A4}$$

Rainer and Serene,⁶ show that for fixed (θ, ϕ) the triad $(\hat{\kappa}_1, \hat{\kappa}_2, \hat{\kappa}_3)$ can be thought of as a rigid body whose orientation is given by a unit vector $\hat{\kappa}$ and the angle ψ , by which $\hat{z} \times \hat{\kappa}$ has to be rotated around $\hat{\kappa}$ to align it with $\hat{\kappa}_1 - \hat{\kappa}_2$. The $(\hat{\kappa}, \psi)$ integrals of the functions $S_{\alpha}(\hat{\kappa}_1, \hat{\kappa}_2, \hat{\kappa}_3)$, with $\Delta_{\mu\nu}(\hat{\kappa}_i) = A_{\mu\nu}(\hat{\kappa}_i)_{\nu\nu}$, become linear combinations of two basic integrals:

$$M_{4}^{\mu_{1}\cdots\mu_{4}}(\{\vec{1}\}) = \int \frac{d\Omega_{\kappa}}{4\pi} \int_{0}^{2\pi} \frac{d\psi}{2\pi} \prod_{i=1}^{4} \vec{l}_{i}^{\mu_{i}},$$

$$M_{6}^{\mu_{1}\cdots\mu_{6}}(\{\vec{1}\}) = \int \frac{d\Omega_{\kappa}}{4\pi} \int_{0}^{2\pi} \frac{d\psi}{2\pi} \prod_{i=1}^{6} \vec{l}_{i}^{\mu_{i}},$$
(A5)

where the vectors \vec{l}_i are linear combinations of $(\hat{\kappa}_1, \hat{\kappa}_2, \hat{\kappa}_3)$. The functions M_4 and M_6 are rotationally invariant tensors of ranks 4 and 6, and can be written as

$$M_{4}^{\mu_{1}\cdots\mu_{4}}(\{\vec{l}\,\}) = \delta_{\mu_{1}\mu_{2}}\delta_{\mu_{3}\mu_{4}}x_{4}((\vec{l}_{1},\vec{l}_{2}),(\vec{l}_{3},\vec{l}_{4})) + \text{two other pairings },$$

$$M_{6}^{\mu_{1}\cdots\mu_{6}}(\{\vec{l}\,\}) = \delta_{\mu_{1}\mu_{2}}\delta_{\mu_{3}\mu_{4}}\delta_{\mu_{5}\mu_{6}}x_{6}((\vec{l}_{1},\vec{l}_{2}),(\vec{l}_{3},\vec{l}_{4}),(\vec{l}_{5},\vec{l}_{6})) + \text{fourteen other pairings },$$
(A6)

where

$$\begin{aligned} x_{4}((\vec{l}_{1},\vec{l}_{2}),(\vec{l}_{3},\vec{l}_{4})) &= z_{1}(\vec{l}_{1}\cdot\vec{l}_{2})(\vec{l}_{3}\cdot\vec{l}_{4}) + z_{2}[(\vec{l}_{1}\cdot\vec{l}_{3})(\vec{l}_{2}\cdot\vec{l}_{4}) + (\vec{l}_{1}\cdot\vec{l}_{4})(\vec{l}_{2}\cdot\vec{l}_{3})], \\ x_{6}((\vec{l}_{1},\vec{l}_{2}),(\vec{l}_{3},\vec{l}_{4}),(\vec{l}_{5},\vec{l}_{6})) &= y_{1}(\vec{l}_{1}\cdot\vec{l}_{2})(\vec{l}_{3}\cdot\vec{l}_{4})(\vec{l}_{5}\cdot\vec{l}_{6}) \\ &+ y_{2}\{(\vec{l}_{1}\cdot\vec{l}_{2})[(\vec{l}_{3}\cdot\vec{l}_{5})(\vec{l}_{4}\cdot\vec{l}_{6}) + (\vec{l}_{3}\cdot\vec{l}_{6})(\vec{l}_{4}\cdot\vec{l}_{5})] + \text{four other products}\} \\ &+ y_{3}[(\vec{l}_{1}\cdot\vec{l}_{3})(\vec{l}_{2}\cdot\vec{l}_{5})(\vec{l}_{4}\cdot\vec{l}_{6}) + \text{seven other products}]. \end{aligned}$$

The coefficients in (A7) are determined by selecting special choices $\{\vec{l}\}$ and contracting M_4 and M_6 with various Kronecker symbols. Specifically,

$$z_1 = \frac{4}{30}, \quad z_2 = -\frac{1}{30},$$

 $y_1 = \frac{16}{210}, \quad y_2 = -\frac{5}{210}, \quad y_3 = \frac{2}{210},$
(A8)

and the weighting functions in the table follow directly from Eqs. (A3) and (A6)-(A8).

APPENDIX B

Let $\delta({}^{3}P_{J})$ be an isospin-1 and orbital angular momentum-1 scattering phase shift for the scattering of

$$\delta_{11}^{\rm so}(\kappa_F) = -[2\delta({}^{3}P_0) + 3\delta({}^{3}P_1) - 5\delta({}^{3}P_2)]/12 \qquad (B1)$$

is approximately equal to the Born scattering phase shift in the ${}^{3}P_{2}$ state if only spin-orbit forces were present.^{8,16}

The ${}^{3}P_{2}$ scattering phase shift is given by

$$\exp[2i\delta({}^{3}P_{2})] = 1 - i\pi^{3}N'(0)$$
$$\times \int d\Omega_{b} \int d\Omega_{a} Y_{1}^{1}(\hat{b})^{*}R_{ba}Y_{1}^{1}(\hat{a}) , \quad (B2)$$

where N'(0) is the single-spin free-neutron density of states at the Fermi energy and the transition matrix element R_{ba} describes scattering from the two-particle state $|a\rangle$ with particle momenta $\kappa_F \hat{a}$ and $-\kappa_F \hat{a}$ and both spins up into a state $|b\rangle$ with particle momenta $\kappa_F \hat{b}$ and $-\kappa_F \hat{b}$ and both spins up. In the Born approximation R_{ba} is is given by

$$R_{ba} = (2\pi)^{-3} \Gamma^{(0)}_{\uparrow\uparrow,\uparrow\uparrow}(\kappa_F \hat{b}, 0, -\kappa_F \hat{b}, 0; -\kappa_F \hat{a}, 0, -\kappa_F \hat{a}, 0) ,$$
(B3)

where $\Gamma^{(0)}$ is the bare four-point vertex. In order to express R_{ba} over the dimensionless quasiparticle-scattering amplitude T in neutron-star matter, we use the relation

$$T(\hat{\kappa}_{1}, \hat{\kappa}_{2}; \hat{\kappa}_{3}, \hat{\kappa}_{4}) \equiv [2N(0)/z^{2}]\Gamma(1, 2; 3, 4)$$
$$= [2N(0)/z^{2}]\Gamma^{(0)}(1, 2; 3, 4) , \qquad (B4)$$

- *Present address: Department of Physics and Astronomy, University of Maryland, College Park, MD 20742.
- ¹H. Brand and H. Pleiner, Phys. Rev. D <u>24</u>, 3048 (1981).
- ²J. A. Sauls, D. L. Stein, and J. W. Serene, Phys. Rev. B <u>25</u>, 967 (1982).
- ³P. Muzikar, J. A. Sauls, and J. W. Serene, Phys. Rev. D <u>21</u>, 1494 (1980).
- ⁴J. A. Sauls and J. W. Serene, Phys. Rev. D <u>17</u>, 1524 (1978).
- ⁵N. D. Mermin, Phys. Rev. A <u>9</u>, 868 (1974).
- ⁶D. Rainer and J. W. Serene, Phys. Rev. B <u>13</u>, 4745 (1976).
- ⁷A. A. Abrikosov and I. M. Khalatnikov, Rep. Prog. Phys. <u>22</u>, 329 (1959).
- ⁸P. Signell, in *The Two-Body Force in Nuclei*, edited by S. M. Austin and G. M. Crawley (Plenum, New York, 1972), p. 9.
- ⁹In principle the T amplitude contains also a term $T^{(ten)}$ characteristic for tensor forces since such a term appears even if the potential term in the Bethe-Salpeter equation includes only a central term and a spin-orbit term. However, the scattering data of Signell⁸ indicate that the tensor term in the T amplitude for the free neutron-neutron scattering is negligible. An indirect indication that the same is true in neutron matter is

where the second equality follows from the Born approximation for the full four-point function Γ , $i \equiv (\kappa_F \hat{\kappa}_i, 0)$ for i=1,2,3,4, and spin arguments have been suppressed. The factor z describes the renormalization of the quasiparticle pole $(0 \le z \le 1)$ and N(0) is the single-spin quasiparticle density of states at the Fermi energy.

From Eqs. (B2)-(B4) it follows that

$$e^{2i\delta(^{3}P_{2})} = 1 - \frac{iz^{2}N'(0)}{16N(0)} \times \int d\Omega_{b} \int d\Omega_{a} Y_{1}^{1}(\hat{b})^{*} T_{\uparrow\uparrow,\uparrow\uparrow}(\hat{b}, -\hat{b}; \hat{a}, -\hat{a}) Y_{1}^{1}(\hat{a}).$$
(B5)

Substituting the expression (1.7) for the dimensionless quasiparticle-scattering amplitude and using the parametrization of L explained below Eq. (2.5), we obtain

$$e^{2i\delta_{11}^{\rm so}(\kappa_F)} = 1 + \frac{i\pi z^2 N'(0)}{6N(0)} (a_0 - a_2/5) , \qquad (B6)$$

recalling that in the Born approximation $\delta({}^{3}P_{2})$ equals δ_{11}^{so} when only spin-orbit forces are present. Neglecting the a_{2} term in the last equation and expanding the exponential on the left-hand side to terms linear in δ_{11}^{so} , we obtain

$$a_0 \simeq (12/\pi) \delta_{11}^{\rm so}(m^*/m) (1/z^2)$$
 (B7)

From the nucleon-scattering data, Signell⁸ obtains $\delta_{11}^{s_0} \simeq 17^\circ$ for $\kappa_F = 1.8$ fm⁻¹. This value for $\delta_{11}^{s_0}$ and the value for the neutron effective mass ratio¹² $N(0)/N'(0) \equiv m^*/m \simeq 0.9$ give $a_0 \simeq 1/z^2$, and we take $a_0 = 2$ as a typical value.

that the tensor contribution to the Landau parameters are large in symmetric (isospin-zero) nuclear matter, but almost negligible in neutron (isospin-one) matter (Ref. 12).

- ¹⁰K. S. Dy and C. J. Pethick, Phys. Rev. <u>185</u>, 373 (1969).
- ¹¹S. O. Bäckman, C. G. Kälman, and O. Sjöberg, Phys. Lett. <u>43B</u>, 263 (1973).
- ¹²J. A. Niskanen and J. A. Sauls, report, 1981 (unpublished).
- ¹³D. Hone, Phys. Rev. <u>125</u>, 1494 (1962). Notice that the spinorbit term (1.7) does not contribute to the forward-scattering amplitude so that the FWSSR for $T = T^{(cen)} + T^{(so)}$ reduces to the FWSSR for $T^{(cen)}$.
- ¹⁴Equation (2.9) can also be obtained from Table III of Rainer and Serene⁶ by using the identities $Tr(AA^{\dagger})^2$ $=\frac{1}{2} |TrA^2|^2 + (TrAA^*)^2 - 2TrA^{2*2}$ and $TrAA^{\dagger}(AA^{\dagger})^*$ $=TrA^2A^{*2}$, which hold for any traceless and symmetric 3×3 matrix A,⁵ to relate the general l=1, s=1, $\Delta\beta_i^{cen}$ to the ${}^{3}P_2$ $\Delta\overline{\beta}_i^{cen}$.
- ¹⁵M. Hoffberg, A. E. Glassgold, R. W. Richardson, and M. Ruderman, Phys. Rev. Lett. <u>24</u>, 775 (1970).
- ¹⁶L. Heller and M. S. Sher, Phys. Rev. <u>182</u>, 1031 (1969).