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Influence of strong-coupling corrections on the equilibrium phase
for 3Pz superfluid neutron-star matter
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We calculate strong-coupling corrections to the I'2 neutron-star-matter Ginzburg-Landau func-
tional including spin-orbit and central forces. Based on a two-parameter approximation for the
spin-orbit scattering amplitude and typical estimates for the neutron-matter Landau parameters we
conclude that the most likely equilibrium phase of P2 neutron matter is described by a unitary order
parameter. Better calculations of neutron-rnatter parameters, particularly the spin-orbit scattering
amplitude, would allow a stronger conclusion.

INTRODUCTION AND SUMMARY

Recent theoretical work on superfluidity in neutron
stars has concentrated on the structure and hydrodynam-
ics of the rotating P2 superfluid interior. ' The novel
properties of the P2 neutron superfluid that distinguish it
from the more conventional s-wave superfluid are a
consequence of spontaneously broken spin-orbit symme-
try. In particular, the structure of vortices in the P2 neu-
tron superfluid, which play a central role in theories of
the rotational dynamics of pulsars, depends implicitly on
the equilibrium-phase order parameter, or condensate am-
plitude for the P2 neutron pairs. The problem of deter-
mining the equilibrium-state order parameter P2 pairing
separates into two parts. The first part is to determine the
possible phases by minimizing the general fourth-order
Cxinzburg-Landau (GL) free-energy functional over the
space of P2 order parameters for arbitrary values of the
parameters that define the functional. This problem has
been solved by Sauls and Serene and Mermin. The
second part of the problem, which is the subject of this
paper, is to calculate the parameters which define the GL
functional from a microscopic theory and thereby deter-
mine the equilibrium phase. The calculation presented
below extends the earlier work of Ref. 4 to include spin-
orbit scattering in the strong-coupling corrections to BCS
theory for P2 pairing. Our conclusion that the equilibri-
um phase of P2 neutron matter is described by a unitary
order parameter agrees with the tentative conclusion of
Sauls and Serene; we emphasize that this conclusion is
significantly strengthened by our calculations which in-
clude spin-orbit scattering. In the Introduction we briefly
review the GL theory of I'2 pairing and pay particular at-
tention to the relevance of corrections to the BCS theory,
discuss the importance of the spin-orbit forces to the
properties of neutron matter at high density, and summa-
rize our results for the equilibrium phase diagram for Pz
neutron matter. The rest of the paper summarizes the cal-
culation of strong-coupling corrections with spin-orbit
scattering for I'2 pairing.

The VI theory of I'2 pairing is discussed by several
authors; for our purpose we use the notation of Sauls and
Serene. The order parameter A„ for I'2 pairing is a
three-dimensional complex matrix which is both traceless

and symmetric. The equilibrium order parameter is deter-
mined by minimizing the homogeneous mean-field free-
energy functional over the space of P2 order parameters.
This functional, expanded through fourth-order in A&, is

bQ[A]= —,u TrAA*+P&
~

TrA
~

+P2(Trad')

+p3 TrA A*

The important result is that all the minima of this func-
tional can be found for any set of parameters IPi I. There
are three classes of minima corresponding to the three la-
beled regions of the phase diagram (Fig. I). In the region

REGION I

I I

REGIGN 2

FIG. 1: The phase diagram for P2 Ginzburg-Landau func-
tional. The BCS theory predicts pj ——0 and p3 ———1 corre-
sponding to a unitary order parameter. Strong-coupling correc-
tions give p& &0 and a phase point between the half-lines 2"
and 8" (with slopes of —1.6 and 4.0) in the limit when spin-
orbit forces dominate, or between the half-lines A tot and Bt"
t'with slopes of —1.4 and 11},when we use Landau parameter
values of Hackman et aI. " The phase point moves away from
nonunitary regions 1 and 2.
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1 the superfluid state (referred to as "type 1" hereafter) is
described by

2 p~ cc (u~ +EUp )(u~+ lU~) (1.2)

with u.v=0, corresponding to a condensate of neutron
pairs in a pure M& ——+2 state along m =u & U. The type-1
phase is a ferromagnetic superfluid with magnetization

y„A kFM-
3m~

which is of the same order of magnitude as the magnetic
field in the interior of neutron stars. The type-1 phase
would also have interesting rotational dynamics because
the order parameter allows for vortex structures without
singular cores.

The type-2 phase has an order parameter

g (2) ~ g g +ei2~/3U U +e —i2~/3~
pv p v p v P (1.3)

where (u, u, w ) is an orthonormal triad. There is no net
spin polarization in this phase even though time-reversal

symmetry is broken by the type-2 order parameter. Be-
cause of the complex phase factors in Eq. (1.3) the type-2
phase has interesting topologically stable line defects that
carry circulation; however, this phase does not allow for
the coreless vortex structures associated with the type-1
phase.

In region 3 the GL free-energy functional is minimized
by any real, traceless and symmetric order parameter

A p~ o u p u ~+PU p U ~ —( 1 + I' )w p w ~,

where (u, u, w) is an orthonormal triad and —1&r & ——,

parametrizes the accidental degeneracy of the type-3
phases. In particular, the state with r = ——,,

(3) 1

Ap+cc(urdu+ 35pp)9

describes P2 Cooper pairs in a pure MJ ——0 state with u

as the quantization axis, and is the most probable candi-
date for the uniform equilibrium P2 phase if a type-3
phase is energetically stable.

The type-3 phases are likely candidates for the equili-
brium state because the BCS theory values of the GL pa-
rameters IplI lie in region 3. However, relatively small
corrections to the BCS parameters could stabilize the
type-2 phase. Much larger modifications to the BCS-
theory values could stabilize the ferromagnetic type-1
phase or destabilize all possible phases within the fourth-
order GL theory.

The corrections to the BCS free-energy functional were
systematically examined by Rainer and Serene. There it
was shown that the free energy has an expansion in the
parameter T, /TF, the ratio of the transition temperature
to the Fermi temperature. Estimates of this ratio for the
P2 neutron superfluid vary between 10 and 10

The BCS free energy is of the order (T, /Tz), while the
strong-coupling corrections to the free energy are of the
order (T, /T~)

~

T ~, where
~

T
~

is the normalized
quasiparticle-scattering amplitude. The important con-
clusion of Rainer and Serene is that to leading order in
T, /T~ the strong-coupling corrections are given by

Here q=K3 —~& and q'=~4 —scI are the momentum
transfers and ~;=zz~;, i=1,2,3,4. In a potential approx-
imation the function I.(q, q') is given by

P

q'
d f(q)+q d, f(q')

4 dq dq'
(1.8)

where f(q) is proportional to the Fourier transform of the
&(&) in the spin-orbit interaction

V(r)L.S/Irl .
The total T amplitude is given by the sum of T'""' andT'"' in Eqs. (1.6) and (1.7). The strong-coupling correc-

tions hpI in the CxL free-energy functional are weighted
angular averages of the total T amplitude. In order to
evaluate these quantities we use the s-p wave approxima-
tion of Dy and Pethick, ' which relates T'""' to the
5 =0, 1 Landau-Fermi liquid parameters, while for T' ' it
is most convenient to expand (d/dq)f(q) in the Legendre
polynomials of x2 ——K& K2 [q =2K+((1—xz)/2)' ]. After
retaining only the I =0, 1 terms in (d/dq)f(q), the result-
ing expressions for b,P; are functions of three Landau pa-
rameters A o, A o, and 3 $, and two spin-orbit parameters
ao and a&. When spin-orbit forces dominate we show
that the corrections to the BCS theory do not lead to
nonunitary phases; spin-orbit scattering moves the phase
point away from regions 1 and 2. Very large values of
T, /Tz and the spin-orbit coupling strength may lead to
breakdown of the stability conditions on the fourth-order
GL functional.

To discuss the phase point (p3/p2, p3/p2) with both cen-
tral and spin-orbit scattering included, we fix T "" with

weighted angular averages of the normal-state scattering
amplitude for quasiparticles at the Fermi surface. Thus,
with a good approximation for the quasiparticle-scattering
amplitude the leading-order strong-coupling corrections
can be calculated. The form of the dim ensionless
quasiParticle-scattering amPlitude T~p rz(K3,Kz,K3,K4) is
dictated by the microscopic forces among particles. When
only central forces are present the T amplitude has the
for In

T' p"r'z(K&, K2 ,K3,K'4) =T"(O,ItI)5~r5p

+T"(8,$)c7~r. o pz, (1.6)

where (0,$) are the Abrikosov-Khalatnikov angles for
four unit vectors K~, K2, K3, K4 for the directions of the
quasiparticle momenta which satisfy the momentum con-
servation law K, +K2 ——K3+K4. Specifically, cosH=K) Ic2

and coslp —Ic] (Ic3 Ic4)/( 1 —K& K2). Nucleon-nucleon
scattering phase-shift data at laboratory energies EI & 300
MeV (corresponding to Fermi energies E~) 75 MeV) sug-
gest that at the densities p&5. 10' g/cm (i.e., inside neu-
tron stars) spin-orbit forces between neutron excitations at
the Fermi surface are large, while central forces are small-
er and repulsive. Thus, we suggest that the T amplitude
at high densities in neutron-star matter is dominated by a
spin-orbit scattering term

T~p rp(KUK2, 'K3, K4) =I (q, q )q Xq '(5~go'pp+ cI'~r5pp) ~

(1.7)
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the Landau parameters evaluated by other authors"'
and vary the spin-orbit parameter ao (it turns out that
contributions proportional to a) can be neglected). For a
range of values of ao determined from nucleon phase-
shift data, we find that the phase point moves away from
regions 1 and 2, so that spin-orbit scattering is not expect-
ed to stabilize either of these phases.

II. CALCULATION AND ANALYSIS
OF STRONG-COUPLING CORRECTIONS

The GL functional can be written as the sum of the BCS
term plus strong-coupling corrections,

~"GLI:~]=~"Bcs[~]+~4'sc[~] (2.2)

where Agsc has a diagrammatic expansion. The leading
terms for b,gsc are determined by the normal-state
quasiparticle-scattering amplitude and T, /TF. Using the

The GL functional is a functional of the off-diagonal
self-energy A(K), which is related to the 3X3-matrix order
parameter by

h(K) =i oo.b, (K. ),
(2.1)

3

b~(K) = g A„J(K)J .

notation of Rainer and Serene, hgsc ——b,PB+b,Pc
+b.pD+bpF, the expressions for hp (a=B,C,D,F) are
calculated with the scattering amplitude T=T'""'
+T'"' given by Eqs. (1.6) and (1.7) and are listed in Ap-
pendix A. After doing the spin traces the resulting ex-
pressions contain angular integrals of the form

dQ~ dQ2 dQ3f f 5(~ ~K)+K2 —K3~
~

—1)

XA(K(,K2, K3)B(K»K2,K3), (2.3)

where A(K)'K2, K3) depends only on T =T (8,p),=T' '(8,p), L=L(q,q'), and L=L(q, K) witha=s,
a, K=Ki+K2, and (8,$) are Abrikosov-Khalatnikov an-
gles for (K3 —K2K) —K&). All these amplitudes are func-
tions of (8,$). The function B(K),K2,K3) contains products
of different energy-gap vectors A&(K;) and projections of
q, q ', and ~, and therefore it depends on other variables
besides (8,$). In Appendix A we integrate out these extra
variables expressing b,P in terms of weighted averages
over the angles (8,$). Our result for the strong-coupling
corrections

Ap, =ApB+ . +ApD+Ap;

in terms of these averages is

~PB+C '
( — BC+T(s)2+ —B+CT(a)2+ —B+CL2+g(s)B+CLT(s)+g(a)B+CLT(a))6.84

l 16 l l l l l

happ ( —D(T{s)T(s)+T(a)T(a))+ D(T(s)T(a)+T(a—)T(s))+ —DLL+~(s)DLT +g(a)DiLT(a))
l (2 4)

apt (~ FT{s)2+—FT(a)2+ —FL2+g (s)F LT(s)+g(a)F LT(a))
16

TABLE I. The weighting functions w, U, u,J '"" expressed over momentum-transfer variables t2 and t3, where
x'=[(1—t, —t, )t, ]'".

W)

W2

W3

10(t2 —t2 )

8 —8(t2 —t2 }
—8 —12(t2 —t2 )

—1+2t2+6(t3 t2t3 t3 )
—4+ 8t2+4(t3 t2t3 t3 )

2 —4t2 —12(t3 t2t3 t3 )

20(t2 —tg }—40tzt3
8 —8(t2 —t2 ) —8(t3 —t3 )—32t2t3
—8 —52(t2 —t2')+28(t3 t3 )+ 112t2t3

U3

4—34(t2 —t2 )

8—8(t2 —t2 )

60(t2 —t2 )

1 —2t2 —16(t3 t2t3 t3 )
—4+ 8t2+4(t3 t2 t3 t3 )

6—12t2+24(t3 t2t3 t3 )

8 —68(t2 —t2 ) —48(t3 t3 )+ 168t2t3
—8+ 8(tq —t2 )+8(t3—t3 }+32t2t3
24+36(t2 —t2 ) —44(t3 —t3 ) —176t2t3

Q3

( —21t2 —21t3+28t2t3 ) /7
( —96+96t2+ 16t3 —120t2
—96t2t3 —40t3 )/7
(24+ 18t2+66t3+ 72t2
+24t2t3+24t3 )/7

x'(1 —
7 t2)

x'( —
7 t2)

x'( —2)

[ —16+72(t2+t3) 48(t2 +t3 ) —248t2t3]/7

[16—16(t2+t3)+48(t2 +t3 ) —256t2t3]/7

[16—128(t2+t3)+48(t2 +t3 )+752t2t3]/7

+ (s)
1

+ (s)
2

+ (s)
3

(12—24t2)(t2t3)'
0
( —24+48t2 )(t2t3 )

'

[ 16—16(t2+t3)](t2t3)'
[ 16(t2+t3)](t2t3)
[—20+48(t2+t3)](t2t3)

( —20+ 8t2+ 32t3 )( t2t3 )
'

( —32tg+32t3)(t2t3)' 2

(40+ 16t2 —96t3 )(t2t3 )
'

+ (a)
1

+ (a)
2

+(a)
3

( —12+24t,)(t,t, )'r'
0
(24—48t2 )(t2t3 ) '

[—26+32(t2+t3)](t2t3)'
[—16(t2+t3)](tit3)'
[52—48(t2+t3)](t2t3)'

(60—72t2 —48t3 )(tgt3 )

( —32t, +32t3)(t,t3)'"
( —124+ 176t, + 72t3)(t, t3)'"
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The coefficient rI—=N(0)(30k2IT, U+pz)
' is related to the BCS value of p2 by 1)=1.173(T,/T~)p2 and the strong-

coupling G-L coefficients are defined by

b,g~=hP; i
TrA

i
+b, Pz(TrAA*) +AB3TrA A*

while b,p; + =hp; +b,p; and

1 2% d
( . . ) =— d(COSH/2) ( )

0 2m

In Table I we give weighting functions m, v, u, g"" expressed in terms of the momentum-transfer variables
t2 ——(1—x2)/2 and t3 ——(1—x3)/2, where

X2 =ICi'IC3=COS +Siil COSQ,
)0 . )|9

2 2

X2 =ICi'IC4=COS —Siil Cosp .)(9 . )(9
2 2

To complete the calculation we need a reasonable approximation for the scattering amplitudes. For the central force
we use the s-p wave approximation of Dy and Pethick. ' In this case T' ' and T ' ' become

Ti i=AD+A i+t2( —3Ao —3Ao —
2A 1 )+t3( —2A 1 )

T"=—Ao —A i+t2(AO+Ao+2A'i )+t3(2AO+2A o+2A i ),
T"=AD —A 1+t2( —3AO —3AO)+t3(2A 1 ),

T"=Ao+2AO+A 1+t2( —Ao —Ao)+ti( —2AO —2AO —2A i) .

(2.5)

We have used the forward-scattering sum rule (FWSSR)'
to write A 1

———(AD+A 1+AD) in the s-p wave approxi-
mation. We use a potential approxrmatlon for the spj[n-
orbit amplitudes I. and L, and paramet6ze

f(q)= —, f(q)=, y aIPI«2)
dXp kI; I O

and similarly for f(q') and f(ir); Pt is a I.egendre polyno-
mial of order l. The effective spin-orbit potential f(q) is
real and therefore so are all ai's. Although httle is known
about the spin-orbit interaction in neutron matter, we as-
sume that the effective potential V(r) is very attractive at
short distances, while for r & 1 fm V(r) is assumed unim-
portant. Numerical estimates of Iai I based on several
short-range attractive potentials for a Fermi wave vector
vF ——1.8 fm, which is typical for neutron-star interiors,
show that ao & O O «& (&o eath a typ&ca» aloe
ai-ao/2, and ~ai l

&ao/5 for l&2. In general, once
ai 6 [-O,ao] which happens for potentials of longer
range (or at larger ~~'s) ai's with 1)2 also become of or-
der ao and our approximation breaks down. With these
assumptions, the spin-orbit amplitudes are approximately

I =i(t t )' g at[PI(x2)+PI(x3)]
1=0

Ap 1'———ilao (1.061+0.104x+0.008x ),

Ape" ———rjao (2.491+0.517x+0.066x ),

hp3'=ilao (3.863+0.472x+0.040x ),

(2.7)

where x=a]/ao. The cross products between the spin-
orbit and the central terms give the following contribution
to b,p;:

hp~ = —gao( —1 29AO —5.73AO —0.71A i )

—alai(0. 09AO 0 61A —+o0. .21A 1),

bP2'~'=2)ao[6. 18(AO+Ao)]

+2)ai[0.37(Ao+Ao)] ~

Ap3' '———gao(8. 80A o+ 17.70A0+ 1.34A i )

(2.8)

I

Inspection of Eqs. (2.4)—(2.6) and the weighting func-
tions given in Table I shows that b,p; are linear combina-
tions of basic angular averages C „=(t2 ts") for
m, n=1, 2, . . ., which can be easily evaluated. We then
find that the spin-orbit contribution to hp; is

L =i[(1 t2 t3)t2]'~ g ai[PI(x2)+—PI( ——x, )]
1=0

=21 [(1 t2 t3)t2] [a0+alt3]

(2.6) —2)a 1 ( —0. 15A o+ 1.63A o+0. 17A 1) .

Finally, the central-force contributions to the b.p;, calcu-
lated in the s-p wave approximation with A ~ eliminated
by the forward-scattering sum rule, are'
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bPi = —g[4 47(Ao) +26.07(Ao) +8.87(Ai) +19 83AoAo+11.07AoA i+27 40AoAi] ~

~P 2 = —g[11.73(A o) + 17 40(A o ) +2 80(A i ) +23 20A oA o+ 3 21A oA i +6 99A oA i ]

hP""=g[3.76(Ao) +2.83(Ao) —15.20(A i ) +8 6.8AoAo —16.39AoA i
—20.8'7AoA i] .

To analyze the position of the phase point (pi,p3),
where pi =pi/p2 and p3 =p3/p2, it is convenient to nor-
malize the strong-coupling parameters to P2 by writingBCS

b; =b,PI/P2 . The coordinates of the phase point in Fig.
1 are then pi bi/——(1+b3) and p3 —(b3 1)/(1+ b3).
First we consider the case of very strong spin-orbit forces
when hie; can be approximated by b,p,".

From Eq. (2.7), b,P," is negative for any value of
x =a i/ao, which means that the phase point moves away
from region 2. The slope of the line which connects the
phase point (pi,p3) with the BCS phase point (0, —1) is
given by S=(b2+b3)lbi and depends only on x if we
neglect the central terms. The minimum slope
S=—1.55& —2 for x= —2.64 shows that region 1 is
also excluded. Finally, we check if strong spin-orbit
scattering violates the stability conditions on the fourth-
order CJL free-energy functional. In our case Pi &0 and
S & —2 imply that the relevant stability requirements are
P2&0 and p3& —2(pl+1) The first condition bf& —1

for typical values ao ——2 (see Appendix B), x= —,, and
T, /TF 40&10 i——s satisfied by a factor of 20. The
second condition gives ao T, /TF (0.13 using x = —,; for
the above estimates of ao and T, /TF this inequality is sa-
tisfied by a factor of 8. However, ao and T, /TF are not
well known. A transition temperature as high as
T, /TF-10 is not ruled out. A violation of the stabili-
ty conditions presumably implies that higher-order terms
in the GL functional determine the equilibrium phase.

To estimate b,P; with both spin-orbit and central forces
included, we use the available calculations of neutron-
matter Fermi liquid parameters. "' For ~F ——1.8 fm
from Hackman et al. " follows Ao ——0.14, Ao ——0.50, and
A ]

———0.57, which gives

AP, =( —2.560+3.101ao—1.245ao ) P~
TF

I

%'e have neglected the a ~ terms since they are an order of
magnitude smaller than the ao terms. b,fji given by Eq.
(2.10) is always negative which implies that the phase
point moves away from region 2. The minimum slope
S( —5.4)-=—1.43 & —2 shows the phase point also moves
away from region 1. For values of ao between —, and 2

the slope is large and positive (S—10) and the phase point
may cross the p3 ———2(pi+1) stability line if T, /TF is
sufficiently large. For ao ——2 and T, /TF 4X10—— (a
typical estimate for this ratio' ' ) the phase point is close
to the BCS phase point (pi-= —5.5X10, p3+1
= —3.1X10 ').

The qualitative results are rather insensitive on particu-
lar values of Landau parameters. This suggests that
spin-orbit scattering will not stabilize a nonunitary I'z
phase. It also appears unlikely that strong spin-orbit
scattering violates the stability conditions of the fourth-
order GL functional. Better estimates of T, and spin-
orbit scattering amplitudes would decide both questions.
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APPENMX A

Let AP (a=8, C,D,F) be the free-energy contribution
of diagram n of Rainer and Serene. Near T„b,I|I is
fourth order in 3& and has the form

X(0)

dQ& dQ2 dQ3
&& I —I — I ll(iiK4ii —l)S (K, , K~, K3).

&pz ——( —5.707+4.643ao —2.922ao') F3",
TF

kp 3 —(4.347—10.932ao +4.53 lao ) 0 2
TF

(2.10)
(A 1)

The constants f come from frequency sums and com-
binational coefficients and are given by flI ———,f,
= —6.84/16, f -=1O.15/2, and f = 3O.44/8. The S.——
are functions of h(K;) and b, (K;)—= —I'ohio b, (K;.)*,'

SII ——, T prz(set 1)Tr&, ir(se—t 2)(b(Ici)b(Ici))~~(b(ic2)b(icz))ir~,

Sc——, T p rz(set l)Tr z—&(set2)(h(Ki)E(Ki)) ~ (b(K3)Z(K3))rr,

SD ——,' T 13rz(set 1)TrIr —z(set3)(bKi)b(Ki))~~A(K4)qzb(K2)pg,

S~= ,' T &rz(set l)T p —rz(set 4)b(Ki) 4(K2)pi36(K3)ry 6(Ic4)pp,

(A2)

where set 1, set 2, set 3, and set 4 denote ordered quadruples of unit vectors (Ki K2 Ic3 K4) (K3 K4 Ici Icy) (Ici —Ic2', Ic3 —K4),
and ( —Ki, —Kz, —ic3, —K4). Summation over repeated spin indices is assumed. After performing the spin sums in (A2)
and using the invariance of the domain of integration in (Al) under Ki~K2, ic3+-+ic4, (K3 —Ic2'Ici —K4)~(Ki Icy'K3 Ic4), and
the antisymmetry property of the T amplitude, we express b.ItI in the form (Al) with S now given by
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~a =(11~11I'I
I ~zl I

—u1 u»T' ' +(3I
I ~11 I'I

I ~2l I'+5u1. uz) T'"+2[«1 K)«z.K}—11~11I'I
I ~zl I']L '

~c =(11~111'11~3l
I' —u1.u3}T'"+(311~1II'I

I
~ 31 I'+ u1. u3) T'"+2[(u1.K)(u3 K)—

I I ~1I I'I
I ~31 I']L'

+2[(u1Xu3).q Xq ']iL(T"—T"),
8 =(IIZ II 5 )(T"T"+T"T")+(—u .u )(T"T"+T"T")

+ [11~111[(~4K)(~ 2 q ')+(~4 q )(~ 2 K}]+(u1q ')(u42 K}+(u1K)(u42'q ')+~42u1'KXq 'ILL

+ Il(II ~1ll + II ~311')u42+~42(u1+ u3}] q Xq

+ I [(I I
~11I'+ ll ~31 I') u42+ ~42(u1+ u3}—2«4 u1» 2 —2(~ 2.u3}~4].q Xq 'I«T"

~F (~31~42+632641—634612)T +(—5531542+ 3632541+5534512)T

+2[631642 2531(64 K)(h 2 K) —(u31 K)(u42 K)]L +4[64 (2U3, .q Xq )]«T"

(A3)

+4I[~42u31 (~4 u31)~2 (~2 u31)~4] qXq

The notation in Eqs. (A3) is Z;=b. (K;) u;=5;Xb, *; for i=1,2,3,4, h,z
——6;.ZJ, and u,j——5;XZJ for i=3,4 and

j=&,2, and 6~2 ——6 ~.4 2 and 43/ —A3 +4 A.iso

T' '=T' '(8,$)=T' '(K1,K2, K3,K4),

T' '=T' '(g, g)=T' '(K3, Kz, K1) —K4)—
for a=s, a, and L =L(q, q'), L =L(q, K).

In order to simplify these expressions for AP~ we use the identity

(A4)

Rainer and Serene, show that for fixed (8,$) the triad (K1,K2 K3) can be thought of as a rigid body whose orientation is
given by a unit vector K and the angle f, by which z XK has to be rotated around K to align it with K1 —Kz. The (K,f) in-
tegrals of the functions S~(K1,K2,K3), with h„(K;)=A„„(K;)„,become linear combinations of two basic integrals:

2'
(A5)

p ~ ~ ~ p ~ " 2mdg

i=]

where the vectors I; are linear combinations of (K1,K2,K3). The functions M4 and M6 are rotationally invariant tensors of
ranks 4 and 6, and can be written as

M4' '(I I I)=5„,& 5&~ x4((11, 12),(13 14))+two other pairings,

(A6)
M6' '([ I I)=5» 5„31 5&51 x6((11, 12),(13 14),(15, 16))+fourteen other pairings,

where

x4((11, 12),(13' I 4))=z1(11 I 2)(13'14)+zz[(11 13)( I z 14)+(11~ 14}(I z. 13)],

x6((11, 12)~(13' I 4),(15, 16)}=+1(11 I z)(13 ~ 14)(15~ 16)
(A7)

The coefficients in (A7) are determined by selecting spe-
cial choices j I J and contracting M4 and M6 with vari-
ous Kronecker symbols. Specifically,

+3 2[(11 12}[(13'13)(1416)+(13.16)(14.15)]+four other productsI

+$3[(11 13)(12 15)(14 16)+seven other products] .

and the weighting functions in the table follow directly
from Eqs. (A3) and (A6)—(A8).

4 1

30 ~ +2 30

16 5 2
3 1 210 &+2 210 &3 3 210

(A8)

APPENDIX 8
Let 5(Pz) be an isospin-1 and orbital angular

momentum-1 scattering phase shift for the scattering of
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two nucleens with center-of-mass energies A aF /2m (m
is the neutron mass). Then the quantity

5i'i(KF)= —[25( Pp)+35( Pi) —55( P2)]/12 (81)

is approximately equal to the Born scattering phase shift
in the I'2 state if only spin-orbit forces were present. '

The P2 scattering phase shift is given by

exp[2i5( P2)]=1 in—N'(0)

X fdQe fdQa YI (b ) Re, FI (a ), (82)

where N'(0) is the single-spin free-neutron density of
states at the Fermi energy and the transition matrix ele-
ment Re, describes scattering from the two-particle state

~

a ) with particle momenta Irma and —@ca and both spins

up into a state
~

b ) with particle momenta

ahab

and a~b-
and both spins up. In the Born approximation R~, is
is given by

R~ (2n)——I 't, '.«(aFb, O, sFb, O;——ve.a,O, —@~a,O),

(83)

where the second equality follows from the Born approxi-
mation for the full four-point function I, i—:(a~&;,0) for
i =1,2,3,4, and spin arguments have been suppressed. The
factor z describes the renormalization of the quasiparticle
pole (0&z &1) and N(0) is the single-spin quasiparticle
density of states at the Fermi energy.

From Eqs. (82)—(84) it follows that
2is('~, ) iz'N'(0)

16N(0)

)& fdQe fdQ, Y)(b)'T„„(b, b;a—, a)I—",(a).
(85)

Substituting the expression (1.7) for the dimensionless
quasiparticle-scattering amplitude and using the
parametrization of L explained below Eq. (2.5), we obtain

2rs;;(~~) imz'N'(0)
(86)

6N (0)
recalling that in the Born approximation 5( P2) equals 5~&

when only spin-orbit forces are present. Neglecting the a2
term in the last equation and expanding the exponential
on the left-hand side to terms linear in 5~~, we obtain

=[2N(0)/z ]I ' '(l, 2;3,4), (84)

where I' ' is the bare four-point vertex. In order to ex-
press Rb, over the dimensionless quasiparticle-scattering
amplitude T in neutron-star matter, we use the relation

T(KyyK2$K3/K4)—:[2N(0)/z ]I (1,2/3, 4)

ap —(12/m. )5&'&(m" /m )(1/z ) .
From the nucleon-scattering data, Signell
5~'~ —17' for xF ——1.8 fm '. This value for 5~'~

value for the neutron effective mass
N(0)/N'(0) =m*/m =0 9give . ap= 1 /z, and
ao ——2 as a typical value.

(87)
obtains

and the
ratio

we take
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