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Abstract Predictions and discoveries of new phases of superfluid 3He in confined
geometries, as well as novel topological excitations confined to surfaces and edges
of near a bounding surface of 3He, are driving the fields of superfluid 3He infused
into porous media, as well as the fabrication of sub-micron to nano-scale devices
for controlled studies of quantum fluids. In this report we consider superfluid 3He
confined in a periodic geometry, specifically a two-dimensional lattice of square,
sub-micron-scale boundaries (“posts”) with translational invariance in the third
dimension. The equilibrium phase(s) are inhomogeneous and depend on the mi-
croscopic boundary conditions imposed by a periodic array of posts. We present
results for the order parameter and phase diagram based on strong pair breaking at
the boundaries. The ordered phases are obtained by numerically minimizing the
Ginzburg-Landau free energy functional. We report results for the weak-coupling
limit, appropriate at ambient pressure, as a function of temperature T , lattice spac-
ing L, and post edge dimension, d. For all d in which a superfluid transition occurs,
we find a transition from the normal state to a periodic, inhomogeneous “polar”
phase with Tc1 < Tc for bulk superfluid 3He. For fixed lattice spacing, L, there is
a critical post dimension, dc, above which only the periodic polar phase is stable.
For d < dc we find a second, low-temperature phase onsetting at Tc2 < Tc from
the polar phase to a periodic “B-like” phase. The low temperature phase is inho-
mogeneous, anisotropic and preserves time-reversal symmetry, but unlike the bulk
B-phase has only DL+S

4h point symmetry.
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1 Introduction

The p-wave, spin-triplet superfluid phases of 3He provide the paradigm for uncon-
ventional BCS pairing in which spin- and orbital rotation symmetries, SO(3)S×
SO(3)L, are spontaneously broken in conjunction with U(1)N gauge symmetry. It
was realized soon after the discovery that these broken symmetries, particularly
parity and orbital rotation symmetry, implied that interfaces, boundaries and im-
purities could have profound effects on the superfluid phases.1,2 In the case of the
bulk A-phase the effect of the boundary is to lock the orbital quantization axis, l̂,
normal to the boundary. The influence of boundaries can often extend to length
scales much longer than the coherence length, ξ0 = h̄v f /2πkBTc ≈ 200− 800Å
depending on pressure, when there is competition between alignment effects from
curved boundaries and/or superflow.3 In a long cylinder with radius R� ξ0 the
boundary condition on l̂ leads to a texture, i.e. a long-wavelength spatial variation
of the orbital quantization axis, l̂, which is also an equilibrium current-carrying
state.4,5,6 At the coherence length scale near a boundary strong pair-breaking typ-
ically occurs. The orbital component of the order parameter normal to the surface
is suppressed and a spectrum of Fermionic states are localized near the bound-
ary.7,8,9 The de-pairing effect of the boundary is further enhanced if the surface
is rough on length scales comparable to or smaller than ξ0. If superfluid 3He is
confined to a region with dimensions of order a few coherence lengths then the
geometry and surface structure on the boundaries can significantly modify the
equilibrium phase diagram, and can even stabilize phases not realized in bulk su-
perfluid 3He.10,8,9,11

Several studies of superfluid 3He have been performed on thin films or within
a slab geometry.12,13,14 In the case of strong one-dimensional confinement, i.e.
boundary separation D<Dc2 ≈ 9ξ0, the A phase is expected to be the stable phase
even at pressures well below the bulk critical pressure, pc ≈ 21bar.9 NMR mea-
surements strongly support this prediction.15 This is in stark contrast to the bulk
3He phase diagram in which the A phase is only stable at high temperature and
pressure. In weak-coupling theory the planar and axial (ABM) phases are degen-
erate even with strong surface disorder.9 Strong-coupling effects which stabilize
the ABM state at high pressures and high temperatures are poorly known for in-
homogeneous phases at low-temperatures, T � Tc, and low pressures, p→ 0bar.
For this reason the ground state of thin 3He films at the lowest pressures is still
an open question. At intermediate scales of confinement, Dc2 < D < Dc1 ≈ 13ξ0,
the ground state in the weak-coupling limit is predicted to be a “crystalline” phase
with an order parameter that spontaneously breaks translation symmetry in the
plane of the film.11 A one-dimensional periodic phase (“striped phase”) with in-
plane wavelength Q−1

⊥ ≈ 3ξ0 has lower energy than any of the translationally in-
variant axial, planar or B-planar phases over a wide range of film thicknesses and
temperatures. The mechanism responsible for spontaneously breaking translation
symmetry for D.Dc1 is the energy cost of surface pair-breaking compared to the
energy cost for domain wall formation between degenerate B-planar phases. For
D<Dc1 it is energetically favorable for domain walls to enter the film. Interactions
between domain walls lead to the striped phase. This type of competition between
surface pair-breaking, the formation of topological defects and the stabilization
of new phases not realized in bulk 3He is part of the motivation for developing
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sub-micron to nano-scale geometries for confining 3He.15,16 Of particular interest
for this study is the possibility of confining 3He in a periodic geometry such as a
cavity supported by a periodic array of sub-micron scale posts.17

We break translational symmetry externally by considering 3He infused into
an infinite two-dimensional (x− y) periodic array of square posts, with transla-
tional invariance in the third dimension (z). This geometry can also be viewed as a
two-dimensional (2d) grid formed of vertical (x) and horizontal (y) channels. The
spatial region between the corners of four adjacent posts, or alternatively where the
x and y channels intersect is particularly significant, and we will refer to this region
as the “center” of the 2d cell when discussing superfluid 3He confined within this
structure. We expect the results reported here to be valid for confinement lengths
in the z dimension, Lz� 30ξ0.

The order parameter for superfluid 3He belongs to the manifold of spin-triplet,
p-wave, BCS pairing states represented by the 2×2 “gap matrix”,

∆̂(p̂) = ∑
αi
(iσα σy)Aαi p̂i , (1)

which is a function of the direction of relative momentum of the Cooper pair, p̂,
and is parametrized in its most general form by nine complex amplitudes, Aαi. The
3×3 matrix order parameter transforms as a vector under spin rotations, and sep-
arately as a vector under orbital rotations. The maximal symmetry group for bulk
3He is G= U(1)N×SO(3)S×SO(3)L×P×T, where P, T and U(1)N represent space
inversion, time-reversal and global gauge symmetries of the normal phase. The
symmetry reduction resulting from the weak nuclear dipolar interaction is omitted
here, but is important in resolving relative spin-orbit rotational degeneracies, and
in determining the NMR signatures of the phases of confined 3He.

2 Ginzburg-Landau Theory

To determine the phase diagram and superfluid order parameter for 3He confined
within a 2d periodic structure we minimize the Ginzburg-Landau (GL) free energy
for a general spin-triplet, p-wave condensate defined as a functional of the 3×
3 matrix order parameter. A few atomic units away from a boundary the 3He-
3He interactions responsible for pairing are invariant under the maximal symmetry
group of bulk 3He. Thus, the GL functional takes its bulk form,18,19

Ω [A] =
∫

V
dR

{
α(T )Tr

(
AA†)+β1

∣∣Tr(AAT )
∣∣2 +β2

[
Tr(AA†)

]2
+β3 Tr

[
AAT (AAT )∗

]
+β4 Tr

[
(AA†)2]+β5 Tr

[
AA†(AA†)∗

]
(2)

+K1
(
∇kAα j∇kA∗α j

)
+K2 (∇ jAα j∇kA∗αk)+K3 (∇kAα j∇ jA∗αk)

}
.

The equilibrium order parameter is obtained from the stationarity condition for
the GL functional. Confinement is introduced via boundary conditions of the order
parameter field, Aαi(R). For 3He confined in a non-magnetic, periodic geometry
with 4-fold rotational, reflection and inversion symmetries, the maximal symmetry



4

group is reduced by restricting the orbital rotations to the point group D4h (which
includes space inversion), i.e.

G= U(1)N×SO(3)S×D4h×T . (3)

The domain, V , is a square unit cell with side length L. Periodic boundary condi-
tions are imposed on the order parameter field at the outer boundaries of this unit
cell. In the interior of the unit cell is an inner boundary representing the square post
of side length d. Typical boundary conditions for the order parameter on the in-
ner boundary are: (i) maximal pair-breaking in which all components of the order
parameter vanish on the inner boundary and (ii) minimal pair-breaking in which
only the orbital component normal to the surface of the inner boundary is forced
to vanish, and the normal derivative of the tangential orbital components vanishes
on the inner boundary. This latter boundary condition corresponds to surfaces with
specular reflection,1 while the former boundary condition corresponds to an atom-
ically rough surface with strong backscattering.20 Here we report results based on
maximal pair-breaking. We numerically minimize the GL functional on this do-
main, and determine the stable (and in some cases meta-stable) order parameter
(phases) for superfluid 3He in this class of periodic confined geometries. We also
present results for the phase diagram as a function of temperature T , confinement
length D≡ L−d, and period L. The results reported here are appropriate for low
pressures in the GL regime. Thus, we assume weak-coupling values for the GL
material parameters:18,19

α(T ) =
1
3

N(0)(T/Tc−1) , 2β1 =−β2 =−β3 =−β4 = β5 ,

K1 = K2 = K3 =
3
5

N(0)ξ 2
0 , β1 =−

N(0)
(πkBTc)2

{
1

30

[
7
8

ζ (3)
]}

, (4)

where Tc is the superfluid transition temperature for bulk 3He, ξ0 is the zero-
temperature correlation length, and N(0) = k3

f /2π2 v f p f is the single-spin quasi-
particle density of states at the Fermi surface, defined in terms of the Fermi veloc-
ity, v f , and Fermi momentum and wavenumbers, p f = h̄k f .

In what follows we neglect the nuclear dipolar energy and choose aligned
spin and orbital coordinate axes, {x,y,z}, corresponding to the high symmetry
directions of the periodic channel. Thus, the order parameter is represented by,

A =

Axx Axy Axz
Ayx Ayy Ayz
Azx Azy Azz

 . (5)

For bulk 3He, the B-phase, defined by the Balian-Werthamer state,

AB =
∆B√

3

1 0 0
0 1 0
0 0 1

 , (6)

with amplitude given by

∆
2
B (T ) =

1
2
|α(T )|

β12 +
1
3 β345

, (7)
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is the equilibrium phase at low pressures with free energy density given by

ΩB/V =−1
4
|α(T )|2

β12 +
1
3 β345

=−∆CB

2Tc
(T −Tc)

2 . (8)

The second term is the B-phase condensation energy scaled in terms of the heat
capacity jump, ∆CB, at the normal to B-phase transition. For weak-coupling values
of the material coefficients this gives the BCS result, ∆CB/CN = 12/7ζ (3)' 1.43,
where CN = 2

3 π2N(0)Tc is the normal-state heat capacity at Tc. These values for
the bulk B-phase order parameter and free energy are used as the scale for the
order parameter and free energy of confined 3He.

We note that the boundary condition imposed by the interior post is expected
to be accurate only for post side lengths d & ξ0. For post dimensions, d� ξ0, the
boundary is more accurately treated microscopically as an “impurity” that scatters
excitations and breaks pairs.2 The pair-breaking effect of an impurity with side
dimension smaller than a coherence length is reduced by d/ξ0 near the post. We
avoid this limit and restrict our analysis to post dimensions with d ≥ 1

2 ξ0.
Before discussing the numerical results we describe some of the possible phases

with a high degree of residual symmetry, i.e. sub-groups of the maximal symmetry
group, that may be realized by 3He in a confined D4h geometry.

3 Symmetry Classes of 3He in a confined D4h geometry

The effects of confinement are enforced by the boundary conditions imposed on
the order parameter. The boundary conditions reflect the point symmetry of the
confining boundaries. For the case of a periodic array of square posts the ele-
mentary symmetry group of a square post, C4v, is the combined set of four-fold
rotations, {E,C4,C2

4 ,C
3
4}, where E is the identity and Cn

4 = (C4)
n is a rotation

about the z axis by n× π/2, the set of reflections through four vertical planes,
{Πzx,Πzy,Πzx′ ,Πzy′}, and the corresponding rotary reflections, {Rzi ≡C4Πzi | i =
x,y,x′,y′}, where (x′,y′) are axes rotated from (x,y) by π/4 about z. The addition
of reflection symmetry through the horizontal plane, Πxy, and 180◦ rotations about
the vertical plane symmetry axes, {C2x,C2y,C2x′ ,C2y′}, defines the point group, D4h,
which includes space inversion, Ci =C2y ·Πzx.

For any element g ∈ D4h a scalar function transforms as f (R)
g−→ f (ĝT ·R),

where ĝ is the 3× 3 matrix representing the symmetry element g, ĝT = ĝ−1 is
the matrix inverse, and R = (x,y). Thus, the order parameter field, which is a
vector under space rotations and reflections, transforms as Aαi(R)

g−→ gi jAα j(ĝT ·
R). Similarly, for any rotation g ∈ SO(3)S we have, Aαi(R)

g−→ gαβ Aβ i(R), and

under a gauge transformation, χ ∈ U(1)N, Aαi(R)
χ−→ e−iχ Aαi(R). Time-reversal,

T, reduces to complex conjugation, Aαi(R)
T−→ A∗

αi(R).

3.1 Non-Equal Spin Pairing - The B� Phase

In the case of bulk 3He the maximal symmetry sub-group of joint spin and orbital
rotations combined with time-reversal, SO(3)L+S×T, is the symmetry class of the



6

B-phase, i.e. the Balian-Werthamer state with ABW
αi = ∆ δαi. The discrete analog

of the bulk B-phase is a state, which we refer to as the B�-phase, that is invari-
ant under joint spin and orbital elements of the maximal point group, D4h, and
time-reversal, i.e. HB� = DL+S

4h × T. Note that space inversion is broken, but space
inversion combined with inversion in spin-space is a symmetry of the B�-phase.

The matrix structure of the B� order parameter differs substantially from the
isotropic B-phase. For all g ∈ HB� , the order parameter satisfies,

Aαi(R)
g−→ gαβ Aβ j(ĝ

T ·R)gT
ji = Aαi(R) . (9)

It is then straightforward to show that

AB� =

Axx Axy 0
Ayx Ayy 0
0 Azz

 , (10)

with Axx(x,y) = Ayy(y,x), Axy(x,y) = Ayx(y,x), Azz(x,y) = Azz(y,x) and all com-
ponents are real (T symmetry). The diagonal (off-diagonal) components are even
(odd) under x→−x or y→−y. The numerical results presented below show that
the B�-phase is the equilibrium state in the weak-coupling limit at low tempera-
tures.

3.2 Equal Spin Pairing States

The superfluid phases with the highest degree of residual symmetry are those that
preserve a continuous rotation symmetry about an axis d̂ in spin space, i.e. SO(2)Sd .
The direction d̂ is a vector representing spontaneously broken spin-rotation sym-
metry. If d̂ is real, then the broken symmetry phase is an equal-spin-pairing (ESP)
state and d̂ is the direction in which the Cooper pairs have zero spin projection.
The residual symmetry group of the class of ESP states includes SO(2)Sd × Zspin

2 ,
where Zspin

2 = {1,eiπ Rspin

π x̂} is a two element group of the identity and the com-
bined operation of a gauge transformation, eiπ , and a rotation of π about an
axis x̂ ⊥ d̂ in spin space. Continuous U(1)N symmetry is broken, but elements
of U(1)N may be combined with spin or orbital rotations and reflections. In partic-
ular, the point symmetry, D4h, is necessarily broken by any p-wave pairing state.
However, the residual symmetry of the z-aligned polar (Pz) phase contains all the
elements of D4h. In particular, the Pz phase can be expressed as APz

αi = d̂α a(x,y) ẑi
with a(x,y) real (time-reversal symmetry) and invariant under the sub-group C4v:
a(x,y) = a(y,x) = a(−x,y) = a(x,−y). The Pz order parameter undergoes a sign
change for any of the C2i operations and reflection in the xy plane since ẑ→−ẑ.
Thus, combining these operations with the gauge transformation, eiπ , and C4v

yields the group, DL,π
4h , which is isomorphic to D4h. Thus, the residual symmetry

group for the Pz phase is

HPz = SO(2)Sd ×Zspin

2 ×DL,π
4h ×T . (11)

This state is the stable superfluid phase that onsets from the normal state at Tc1 .
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The Pz phase retains the sub-group C4v of point symmetries, but is not the only
ESP state with this symmetry. If we omit the operations that transform z→−z,
then we obtain two possible symmetry classes. If time-reversal is preserved we
obtain the residual symmetry group is

H3D = SO(2)Sd ×Zspin

2 ×CL
4v×T (12)

with an orbital order parameter field, a = axx̂+ayŷ+azẑ, that includes three real
components satisfying the reflection symmetries,

ax(x,y) = −ax(−x,y) = +ax(x,−y) (13)
ay(x,y) = +ay(−x,y) =−ay(x,−y) (14)
ax(x,y) = ay(y,x) (15)
az(x,y) = az(y,x) = az(−x,y) = az(x,−y) . (16)

This phase is not found to be a local minimum of the GL functional for the weak-
coupling values of the β parameters.

Another ESP phase with CL
4v symmetry is obtained if we break T symmetry, but

preserve Πxy ·T. In this case the residual symmetry group is

Hchiral−C4v = SO(2)Sd ×Zspin

2 ×CL
4v×{E , Πxy ·T} . (17)

The orbital vector, a± = a⊥± iazẑ, with a⊥ = axx̂+ayŷ, is a complex vector field
with real amplitudes {ax,ay,az} satisfying the reflection symmetries in Eqs. 13-
16 required by CL

4v. The ± sign reflects the two-fold degeneracy resulting from
broken time-reversal symmetry. These are chiral phases with a local chiral vector
field given by

l± =±a⊥× azẑ =±az(R) [ay(R) x̂−ax(R) ŷ] , (18)

which is confined to the xy plane. For a unit cell centered on the post, the chiral
vector vanishes on the post boundaries and at the center of the two channels, where
ax = ay = 0, if the periodicity of the ordered phase is the same as that of the
underlying geometry. Here the phase is locally the Pz phase. For chiral phases, and
more generally current carrying states, the periodicity of the ordered phase need
not equal the underlying lattice periodicity. Thus, a complete classification of the
residual symmetry sub-groups should include the space-group operations. This is
beyond the scope of this report, but underscores the complexity of the possible
phases of 3He in a periodically confined geometry. In the weak-coupling limit this
chiral ESP phase is not energetically stable, but this phase, or a closely related
phase with period 2L, may emerge as a stable, or meta-stable, low temperature
phase at high pressures due to strong coupling effects.1 However at high pressures,
for very weak confinement, L� 20ξ0, and small post dimensions, d . ξ0, the
chiral−CL

4v phase is unlikely to be the equilibrium phase. In this limit we expect a
chiral ABM-like phase with l||ẑ in the center of the channels to be the equilibrium
phase at temperatures below a narrow region of stability of the Pz phase.

1 The in-plane chiral phase with period 2L is a periodic version of the texture obtained by
Surovtsev and Fomin 21 for a uniform distribution of rod-like impurities embedded in 3He-A.
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Fig. 1 (Color online) Left panel: One-fourth of the unit cell showing the triangular computa-
tional grid. The grey region defines the area occupied by the post. Right panel: Order parameter
amplitude, Azz(R), of the z-aligned Polar phase for L = 20ξ0, d = 8ξ0, T = 0.9Tc, and d̂ = ẑ.
The order parameter is real and scaled in units of the bulk B-phase order parameter, ∆B(T ).

The residual symmetries that define the bulk ABM phase, AABM
αi = dα (m̂± in̂)i,

are (i) chiral symmetry, Zchiral
2 = {E,P2 ·T}, where P2 is reflection in a plane contain-

ing the chiral axis l̂ = m̂× n̂, and (ii) gauge-orbit symmetry, U(1)Lz−N, i.e. rotation
by angle ϑ about the chiral axis, combined with a gauge transformation, e±iϑ , by
phase angle ∓ϑ . A discrete analog of the ABM phase of bulk 3He is obtained
by breaking CL

4v rotational symmetry, but restoring symmetry with appropriate el-
ements from U(1)N. In addition, T symmetry is broken, but chiral symmetry is
present as invariance with respect to the combined operation, T ·Πzx. Thus, the
discrete ABM phase is invariant with respect to the group obtained from these
generators,

CL-N,T
4h =

{
E,eiπ/2C4,eiπC2

4 ,e
i3π/2C3

4 ,TΠzx,eiπ/2TΠzx′ ,e
iπTΠzy,ei3π/2TΠzy′

}
, (19)

and is isomorphic to CL
4v. The full symmetry group is then

HA� = SO(2)Sd ×Zspin

2 ×CL-N,T
4h , (20)

and the functional form of the discrete ABM phase is A±
αi = a(x,y) d̂α (x̂± i ŷ)i,

where a(x,y) is real an obeys the CL
4v reflection symmetries in Eq. 16. The A�-phase

is not stable in the weak-coupling limit. However, several chiral phases are found
to be stationary points of the GL functional for strong-coupling values of the β -
parameters appropriate for high pressures. The phase diagram at high pressures
will be discussed in a separate report.

4 Numerical Methods

To compute the order parameter which minimizes the GL functional we imple-
ment a finite element method (FEM).22 We discretize the 3He unit cell with an
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unstructured triangular mesh generated with the code Triangle.23 This type of
mesh permits spatially varying triangular element sizes, which we use to provide
finer spatial resolution in regions near boundaries and sharp corners as shown in
the left panel of Fig. 1. Also, an unstructured mesh does not enforce any point
symmetry that a periodic mesh possesses. Thus, the residual symmetries of the
phases we find result from interaction terms in the GL functional combined with
pair-breaking and periodicity represented by the boundary conditions.

For the FEM we represent the order parameter with quadratic Lagrange inter-
polating functions defined on each element. The Lagrange interpolating functions
are determined by the values of the order parameter at six nodes corresponding to
the vertices and midpoints of edges of each element. The order parameter field de-
fined at the nodes of each element is continuous across the entire domain. The re-
sulting integration over the domain then separates into independent integrals over
each element which we evaluate numerically with Gauss-Legendre quadrature.24

We minimize the discretized GL functional using an implementation of the
conjugate gradient algorithm, CG DESCENT.25 The gradient, G[A]≡ δΩ/δA†(R),
is evaluated at each node within the finite element scheme and input as the gradient
in the conjugate gradient method. We set convergence as max{|Gi[A]|} < 10−7,
for all i degrees of freedom (i.e. all 9 complex components of A at each node)
which we determined to yield no significant loss of accuracy compared to stricter
tolerances.

5 Stable Phases - Maximal Pair-breaking

Figure 1 (right panel) shows the equilibrium order parameter for confined 3He
with period L = 20ξ0 and post dimension d = 8ξ0 at temperature T = 0.9Tc for
the case of maximal pair-breaking by the interior boundary. This is a spatially
modulated z-aligned Polar (Pz) state in which only the z-orbital component, Azz,
is non-vanishing. This phase breaks spin- and orbital rotation symmetry, but pre-
serves time-reversal symmetry. Note that the polar amplitude is maximum in the
center of the channel and decreases by approximately 50% into both x- and y
channels. The Pz phase is an equal-spin pairing state and thus the more general
representation for this phase is Aαi = ∆(R) d̂α ẑi, where d̂ is a real unit vector
that defines the broken rotational symmetry in spin space. The Pz phase with only
Azz 6= 0 corresponds to d̂ = ẑ, and is degenerate with respect to the orientation
of d̂ since we have neglected the nuclear dipole and Zeeman energies. The Pz
phase belongs to the symmetry class of pairing states defined by the sub-group,
HPz = SO(2)Sd ×Zspin

2 ×D
L,π
4h ×T, as discussed in Sec. 3

For the periods, L≤ 30ξ0, and temperatures within the region of stability of the
Pz phase, we find a finite Polar amplitude everywhere within the 3He cavity, except
at the post boundaries. However for much larger periods, L, and the same channel
width, D = L−d, the amplitude of the Pz order parameter appears to vanish deep
within the x- and y channels far from the center, leaving a lattice of isolated islands
of Pz condensate in the center. This suggests there may be a regime in which de-
coupled Pz condensates nucleate in the center region, but are not phase coherent
and do not exhibit superfluidity.
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Fig. 2 (Color online) Order parameter components of the B� phase plotted in the domain V for
L = 20ξ0, d = 12ξ0, and T = 0.7Tc. All values are real and scaled by the bulk B-phase order
parameter ∆B(T ). Note the reduced scale of the Axy amplitude.

For the same period, post dimension and boundary conditions we also find
a second stable phase in the weak-coupling regime at a lower temperature. This
phase (B�) also preserves time-reversal symmetry, but has lower symmetry than
that of the Pz phase. The B� phase is similar to the bulk B-phase in that the order
parameter is real, with diagonal elements, Axx, Ayy and Azz in the center of the
channel as shown in Fig. 2. However, the component Axx (Ayy) is strongly sup-
pressed in the y-channel (x-channel), and off-diagonal components, Axy and Ayx,
appear at the corners of the posts. It is also clear from Fig. 2 that the components
of the order parameter obey the reflection symmetries: Axx(x,y) = Ayy(y,x) and
Axy(x,y) = Ayx(y,x), and that the diagonal components, Axx, Ayy and Azz are even
functions of x and y, while the off-diagonal components, Axy and Ayx, are odd
under x→−x or y→−y. The remaining off-diagonal components are all zero:
Azx = Axz = Azy = Ayz = 0. As discussed in Sec. 3 these are the conditions im-
posed by the discrete sub-group, HB = DL+S

4h ×T. This is the maximal allowed point
symmetry and is the discrete analog of the maximal subgroup SO(3)L+S for the
bulk B-phase. Indeed, we recover the bulk B-phase for L→ ∞ and d→ 0, as indi-
cated in Fig. 3. Note that the off-diagonal components are significantly smaller in
magnitude than the diagonal components and become negligible far from the post
corners, except for D≈ Dc(T ), the critical line separating the Pz and B� phases.

The phase transition from the Pz to B� phase is presented in Fig. 3, which
shows the maximal magnitudes for the components of the order parameter as a
function of the confinement length D/ξ0 for fixed period, L, and temperature, T .
The transition is 2nd order, i.e. continuous as a function of D or T , with sponta-
neously broken symmetry from HPz → HB� . For confinement lengths onsetting at
the critical value, Dc(T )→ 4.1ξ0 at T = 0 and L = 20ξ0, the x and y components,
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Fig. 3 (Color online) Order parameter amplitude as a function of the confinement length, D, for
L = 20ξ0 and T = 0.7Tc. The amplitudes are taken as the maxima within the domain. Note that
maxima for Axx and Ayy are equal, as are the maxima for Axy and Ayx, but suppressed compared
to Azz. The dashed vertical line marks the 2nd order Pz to B� phase transition.

Axx, Ayy, Axy and Ayx, become finite, signaling the transition to the B� phase. Close
to the transition the B� phase is locally a “planar” phase deep within the channels
due to the suppression of the orbital components normal to the boundary. However
in the central region the B� phase is defined by all three diagonal components, as
well as the off-diagonal components, Axy and Ayx, allowed by DL+S

4h symmetry.

6 Weak-Coupling Phase Diagram

The phase diagram for superfluid 3He in the weak-coupling limit as a function
of reduced temperature, T/Tc, and confinement length, D/ξ0, is shown in Fig. 4
for two values of the periodicity, L = 5ξ0 (left panel) and L = 20ξ0 (right panel).
These two diagrams are qualitatively representative of the phase diagram for any
5≤ L/ξ0 ≤ 30. In particular, we do not find any additional equilibrium phases as
minima of the GL functional with the weak-coupling material parameters.

The transition lines are found by classifying the phases based on non-negligible
order parameter components, and then bracketing the location of both normal to
Pz and the Pz to B� transitions. These brackets are refined until their width drops
below a specified tolerance, which we chose to be 0.025ξ0. Note that predicted
phase boundaries are limited by the restriction we place on the validity of the
boundary condition for strong pair-breaking, i.e. d ≥ ξ0/2.

The phase boundary for the normal to Pz transition is determined by a linear
eigenvalue equation, obtained by solving the linearized GL equation for the Pz
order parameter, α(T )Azz−K1

(
∇2

x +∇2
y
)

Azz = 0, within the domain V , and with
boundary condition, Azz|∂V = 0, for maximal pair-breaking. The eigenfunction,
Azz ≡ a1(x,y), corresponding to the highest instability temperature, Tc1 , defines
the spatial profile of the first unstable mode of the Pz phase. If we knew the exact
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Fig. 4 (Color online) Phase diagrams for L = 5ξ0 and L = 20ξ0. The dashed curve is the normal
to Pz transition obtained by the variational method. The solid curves are fits of the transition data
points to the functional form of the variational curve. Note that there is a range of confinement
lengths, D, for which only the Pz phase is realized.

functional form of the first unstable mode, a1(x,y), we could obtain the phase
boundary, Tc1(D,L), from the equality in the Rayleigh-Ritz inequality,

α(Tc1)≥
−
∫

V
dR
{

K1|∇a(x,y)|2
}

∫
V

dR
{
|a(x,y)|2

} . (21)

In the absence of a1(x,y) we can obtain a lower bound on the N to Pz transition
temperature with a good approximation to the eigenfunction a1(x,y). Consider the
following approximation to the most unstable mode,

a(x,y) =
[

C(x)+C(y)
1+C(x)C(y)

]
Θ(D/2−|x|)Θ(D/2−|y|)

+C(x)Θ(D/2−|x|) [Θ(−D/2− y)+Θ(−D/2+ y)]
+C(y)Θ(D/2−|y|) [Θ(−D/2− x)+Θ(−D/2+ x)] , (22)

where C(x) = cos(πx/D), Θ(x) is the Heaviside step function, and x and y are
defined on the domain [−L/2,L/2]. This function is piece-wise continuous at the
interfaces between the central region and the x- and y channels, and satisfies the
strong pair-breaking boundary condition, a|∂V = 0. The variational result T var

c1
, is

shown in comparison to the exact numerical result for the N−Pz phase boundary,
Tc1 in Fig. 4.

For the range of L ≤ 30ξ0 that we consider, and for all D ≥ Dc(T ) that gives
a superfluid transition, the Pz phase is stable for a temperature range below Tc1 .
Furthermore, for a given L there is a narrow range of confinement lengths, D, in
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which only the Pz phase is stable. This is in sharp contrast to one-dimensional con-
finement in an infinite slab where the axial or planar phases are stable under strong
confinement. The absence of these phases in the periodic confined geometry here
is due to pair-breaking within the two orthogonal x and y channels, the large cost
in gradient energy for x- and y orbital components for strong confinement and the
weak-coupling β -parameters. Chiral phases, such as the A�-phase and the chiral-
C4v phase will be discussed in a separate report on GL theory of confined phases
in the strong-coupling limit.

7 Conclusions

We have investigated the inhomogeneous phases of superfluid 3He confined to
a two-dimensional lattice of square, sub-micron-scale boundaries (“posts”) with
translational invariance in the third dimension. In the weak-coupling limit, and
strong pair-breaking by the boundary post, we find an instability from the nor-
mal state, at Tc1 < Tc for bulk superfluid 3He, to an equal-spin pairing state with
z-aligned Polar orbital order. For fixed lattice spacing, L, there is a critical post
dimension, dc, above which only the periodic polar phase is stable. For d < dc
we find a second, low-temperature phase onsetting at Tc2 < Tc1 from the polar
phase to a periodic “B-like” phase. The low temperature phase is inhomogeneous,
anisotropic and preserves time-reversal symmetry, but unlike the bulk B-phase has
only DL+S

4h point symmetry. This or similar geometries may be realizable with cur-
rent nano-fabrication processes, and could therefore provide a potential avenue for
experimental studies of the polar phase in 3He in well defined geometries.17 Fur-
ther studies of 3He in geometries with periodic confinement are expected to yield
a large number of tunable phases with unique broken symmetries and topological
properties that are not realized in bulk superfluid 3He.
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