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Recent advances in the fabrication and characterization of anisotropic silica aerogels with exceptional
homogeneity provide new insight into the nature of unconventional pairing in disordered anisotropic media. I
report theoretical analysis and predictions for the equilibrium phases of superfluid 3He infused into a low-density,
homogeneous uniaxial aerogel. Ginzburg-Landau (GL) theory for a class of equal-spin-pairing (ESP) states in
a medium with uniaxial anisotropy is developed and used to analyze recent experiments on uniaxially strained
aerogels. For 3He in an axially “stretched” aerogel, GL theory predicts a transition from normal liquid into a chiral
Anderson-Morel phase at Tc1 in which the chirality axis l̂ is aligned along the strain axis. This orbitally aligned
state is protected from random fluctuations in the anisotropy direction, has a positive nuclear magnetic resonance
(NMR) frequency shift, a sharp NMR resonance line, and is identified with the high-temperature ESP-1 phase of
superfluid 3He in axially stretched aerogel. A second transition into a biaxial phase is predicted to onset at a slightly
lower temperature Tc2 < Tc1 . This phase is an ESP state, breaks time-reversal symmetry, and is defined by an
orbital order parameter that spontaneously breaks axial rotation symmetry. This transition is driven by the coupling
of an axially aligned one-dimensional “polar” order parameter to the two time-reversed two-dimensional axial
Anderson-Brinkman-Morel states. The biaxial phase has a continuous degeneracy associated with the projection of
its chiral axis in the plane normal to the anisotropy axis. Theoretical predictions for the NMR frequency shifts of the
biaxial phase provide an identification of the ESP-2 as the biaxial state, partially disordered by random anisotropy
(Larkin-Imry-Ma effect). The “width” of the jump in the NMR frequency shift at Tc2 provides an estimate of the
orbital domain size ξLIM � 5 μm at 18 bar. I show that the random anisotropy results from mesoscopic structures
in silica aerogels. This model for the random anisotropy field is coarse grained on the atomic scale, and is formu-
lated in terms of local anisotropy in the scattering of quasiparticles in an aerogel with orientational correlations.
Long-range order of locally anisotropic scattering centers is related to the splitting of the two ESP phases.
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The discovery of superfluidity of 3He infused into high-
porosity silica aerogel opened a new chapter into the complex
ordered phases of liquid 3He and provided a novel method to
study the effects of quenched disorder on the symmetry and sta-
bility of unconventional pairing states in Fermi superfluids.1,2

The nature of the ordered phases of 3He in high-porosity
aerogel has recently been clarified by experiments using silica
aerogels with high homogeneity.3

Nuclear magnetic resonance (NMR) spectroscopy has
proven to be a powerful diagnostic of the symmetry of the order
parameter for the superfluid phases.4 Pulsed NMR experiments
on 3He infused into a uniformly isotropic aerogel with 98.2%
porosity5 provide an unambiguous identification of the order
parameter as a Balian-Werthamer (BW) state,6 albeit with a
significantly reduced order-parameter amplitude �B(T ) and
longitudinal resonance frequency �B(T ), compared to that in
bulk 3He-B. Unlike the B phase of pure 3He, which has a fully
gapped excitation spectrum, analyses of heat capacity,7 ther-
mal conductivity,8 and magnetization measurements9 show
that the B phase of 3He-aerogel is gapless, with disorder-
induced Andreev states dominating the low-temperature ther-
mal and transport properties.10 The suppression of the A phase
and the absence of a polycritical point (PCP) in isotropic
aerogels is consistent with theoretical predictions based on
pair breaking by scattering from a homogeneous distribution
of isotropic impurities or a distribution of weakly anisotropic
impurities with orientational correlations on length scale ξs

less than the pair correlation length ξ0 = h̄vf /2πkBTc.11–13

The fabrication of anisotropic aerogels with excep-
tional homogeneity3 has led to recent superflow and NMR

experiments that provide a clearer understanding of the
nature of the superfluid phases of 3He in homogeneous
silica aerogels. Anisotropic stress acting on a homogeneously
isotropic aerogel can dramatically alter the relative stability
of anisotropic pairing states by favoring one or more orbital
components of the p-wave order parameter.11–14 Indeed, the
sensitivity of the order parameter to uniaxial strain is exhibited
in torsional oscillator experiments performed on 3He confined
in axially compressed aerogel.15 These experiments show a
large metastable region of the phase diagram upon cooling,
assumed to be the chiral Anderson-Brinkman-Morel (ABM)
state16,17 (A phase), that extends well below the bulk PCP.
Upon warming from the low-temperature phase, presumed
to be an anisotropic B phase, the transition into the high-
temperature A phase occurs at TAB = 0.075 mK below the
onset of superfluidity in the aerogel (Tca

= 2.275 mK at p =
31.9 bar). This transition is absent for 3He in uncompressed
isotropic aerogel, and is interpreted as the transition into
an equilibrium ABM state stabilized by uniaxial strain.15

However, identification of the high-temperature superfluid
phase as the ABM state is not established. Measurements of the
superfluid density are insufficient to determine the symmetry
of the order parameter. Additional NMR experiments should
clarify the symmetry of the ordered phases of 3He in uniformly
anisotropic, compressed aerogels.

NMR experiments on 3He infused into uniformly
anisotropic, “axially stretched” aerogel18 lead to a radically
different phase diagram and interpretation of the ordered
phases than what is found for 3He in isotropic aerogels.19

Two distinct superfluid phases, both equal-spin-pairing (ESP)
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FIG. 1. (Color online) Two equal-spin-pairing phases labeled
ESP-1 (pink region) and ESP-2 (orange region) identify the ordered
phases of 3He in uniaxially stretched aerogel with 97.5% porosity
(adapted from Ref. 19). The transition at Tc1 is substantially reduced
below the bulk transition (red line). The second ESP state onsets at
Tc2 . An A-B transition at high pressure, characteristic of bulk 3He
(dotted red line), is not observed.

states, are observed. The phase for Tc2 < T < Tc1 (ESP-1
in Fig. 1) was identified as an ABM state with the chiral
axis aligned perpendicular to both the strain axis (ẑ) and the
magnetic field, i.e., the “easy-plane” configuration with l̂ ⊥ ẑ.
This identification is based on the observations of (i) a positive
NMR frequency shift with linewidth as narrow as the normal-
state Larmor resonance, (ii) a tipping angle dependence of
the NMR shift in agreement with that predicted for the ABM
state, and (iii) a theoretical model based on strain alignment of
random cylinders to describe the local anisotropic structure of
aerogel.20 This model is combined with the theory of Rainer
and Vuorio21 for the orientation energy of the chiral axis of pure
3He-A by a single cylindrical impurity, which then predicts the
chiral axis to align with the strain axis for compressed aerogels,
i.e., “easy axis” with l̂ ‖ ẑ for εzz < 0, and perpendicular to the
strain axis for stretched aerogel, i.e., “easy plane” with l̂ ⊥ ẑ
for εzz > 0.20,22,23 This alignment model underlies the inter-
pretation of the ordered phases for 3He in uniaxially strained
aerogels reported by several groups.15,19,24 However, the iden-
tification of uniaxial compression (stretching) with “easy-axis”
(“easy-plane”) alignment of the chiral axis is model dependent,
in this case, upon the alignment of rigid cylinders representing
the local anisotropy of otherwise globally isotropic aerogel
and the assumption that the single impurity result of Ref. 21
extends to a distribution cylindrical impurities with typical
spacing ξa that is less than or the same order as the pair corre-
lation length ξ0. Indeed, the fractal structure of the aerogel25–27

on length scales shorter than ξa implies that the orientation of
the chiral axis may not be inferred from the orientation energy
characteristic of a single cylindrical impurity in pure 3He.
Furthermore, the response of a fractal network of silica strands
and clusters to an external force applied at the surface of an
aerogel is a complex problem. The local stress distribution,
changes in bond angles, etc., may be very different from that
based on rotation alignment of rigid cylindrical impurities.28,29

In Sec. I, I step back from a microscopic description of
how global anisotropy is connected with local anisotropy and

atomic forces, and consider the symmetry constraints for the
phases of superfluid 3He embedded in a uniformly anisotropic
medium on the scale of the pair correlation length ξ (T ) and
develop a Ginzburg-Landau (GL) theory for ESP phases in
such a medium. These considerations lead to predictions
for the order parameter and their NMR signatures for the
phases of superfluid 3He infused into uniaxially stretched
aerogel. In Secs. II and III, I provide theoretical analysis
for the identification of the ESP-1 phase as an ABM state
with the chiral axis aligned along the strain axis. A second
transition into a biaxial phase is predicted to onset at a slightly
lower temperature Tc2 < Tc1 (Sec. V). This ESP phase breaks
time-reversal symmetry, and is defined by a chiral orbital order
parameter that spontaneously breaks axial rotation symmetry.
This transition is driven by the coupling of an axially aligned
one-dimensional (1D) “polar” order parameter to the two
time-reversed two-dimensional (2D) axial ABM states. The
biaxial phase has a continuous degeneracy associated with
the projection of its chiral axis in the plane normal to the
anisotropy axis. In Sec. VI, I show that the NMR signatures
of the ESP-2 phase are explained by a partially disordered
biaxial phase in which the chiral axis is disordered on a cone,
centered on the strain axis, by the random anisotropy of the
aerogel medium, the Larkin-Imry-Ma (LIM) effect.20,30,31 I
also include a discussion of the possibility of a normal to
1D polar transition for 3He in a strongly anisotropic aerogel
in Sec. IV, as well as why this scenario does not explain
the phase diagram of Ref. 19. In Secs. VII and VIII, the GL
theory is combined with microscopic theory for pair breaking
in a medium with both random and global anisotropy. This
allows for additional predictions connecting the normal-state
transport properties of 3He in anisotropic aerogels with the
symmetry of the superfluid phases. In particular, in Sec. IX, I
discuss a model for random anisotropy and the LIM effect
within a scattering theory of partially ordered anisotropic
impurities. This model is the basis for the partially disordered
biaxial phase that is identified with the ESP-2 phase.

I. GL THEORY FOR 3He IN UNIAXIAL AEROGEL

The normal phase of pure liquid 3He is separately invari-
ant under spin and orbital rotations, gauge transformations
[U (1)N], as well as discrete symmetries of space (P ) and
time (T ) inversion, i.e., the group is G = SO(3)S × SO(3)L ×
U (1)N × P × T .32 The order parameter for pure 3He belongs
to vector representations of both spin and orbital rotation
groups SO(3)S and SO(3)L. The 2 × 2 matrix representation
for the spin-triplet, p-wave order parameter6,33

�αβ(p̂) = �d(p̂) · (i �σσ y)αβ (1)

is parametrized by �d(p̂), which transforms as a vector under
SO(3)S, while the orbital pairing states are a superposition
of the L = 1 basis {p̂i | i = x,y,z} of SO(3)L, i.e., dα(p̂) =∑

i Aαi (p̂i).34

The superfluid phases of 3He in “stretched” aerogel are
identified as ESP states.19 Here, I consider the class of ESP
states of the form Aαi = dα Ai , where �d is a real unit vector
in spin space orthogonal to the plane of the Cooper-pair spins,
and Ai is a complex vector under orbital rotations.
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For 3He embedded in a homogeneous, nonmagnetic,
anisotropic medium with inversion symmetry, the orbital ro-
tation symmetry is reduced, and the 3D basis {Ai | i = x,y,z}
for the vector representation of SO(3)L is reduced to bases for
2D and 1D irreducible representations of SO(2)Lz × Z2:⎛

⎝Ax

Ay

Az

⎞
⎠ uniaxial−−−−→

strain

(
ax

ay

)
(b)

, (2)

where Z2 represents the identity and a π rotation about
an axis perpendicular to the uniaxial strain axis (Rπ ), the
latter denoted as ẑ. The 1D order parameter is the “po-
lar” state, which is invariant under SO(2)Lz and changes

sign for b
Rπ−→ −b. The maximal symmetry group is then

G′ = SO(3)S × SO(2)Lz × Z2 × U (1)N × P × T . For each ir-
reducible representation, there is a second-order invariant
for the leading-order contribution to the Ginzburg-Landau
functional. For the class of ESP states, there is one fourth-order
invariant for the 1D representation, two fourth-order invariants
for the 2D orbital representation, and two mixed-symmetry
invariants. Thus, the GL functional for zero magnetic
field is

��[�a,b] = α⊥(T ) |�a|2 + α‖(T ) |b|2
+β1 |�a|4 + β2 |�a · �a|2 + β3 |b|4 + β4 |�a|2 |b|2
+ 1

4 β5 [�a · �a (b∗)2 + (�a · �a)∗ b2]. (3)

The coefficients of the second-order invariants determine
the instability temperatures Tc⊥ and Tc‖ for the 2D and 1D order
parameters, respectively. Thus, for temperatures |T − Tc⊥,‖ | 	
Tc for unstrained aerogel, α⊥,‖(T ) � α′

⊥,‖(T − Tc⊥,‖), with
α′

⊥,‖ > 0. The bare instability temperatures are equal in the
isotropic limit, and thus for weak uniaxial anisotropy we
assume Tc⊥ − Tc‖ = λ εzz Tc, where the uniaxial strain εzz > 0
(εzz < 0) for “stretched” (“compressed”) aerogel, and λ is
a material coefficient whose magnitude and sign depend
on the microscopic mechanism by which anisotropy lifts
the degeneracy between the 1D and 2D pairing symmetry
classes.

II. NORMAL TO 2D PHASES

Consider the case in which Tc⊥ > Tc‖ . Thus, for T � Tc⊥
there is necessarily a temperature region in which α⊥ < 0 and
α‖ > 0. The GL functional in Eq. (3) is then minimized with
b ≡ 0 and reduces to

��[�a] = α⊥(T ) |�a|2 + β1 |�a|4 + β2 |�a · �a|2. (4)

The order parameter is a complex vector in the plane
perpendicular to the strain axis (ẑ), and is parametrized by

�a = � (cos ϕ x̂ + eiψ sin ϕ ŷ). (5)

Minimizing the GL functional with respect to the amplitude
� gives

�� = 1

2
α⊥(T ) �2 with �2 = −1

2

α⊥(T )

β1 + β̃2
, (6)

where β̃2(ϕ,ψ) = β2[1 − sin2 ψ sin2(2ϕ)]. Global stability
requires β1 > 0 and β1 + β2 > 0, however, there are two
possibilities for the equilibrium phase just below Tc1 ≡ Tc⊥ .

For β2 < 0, the free energy is minimized for ψ = 0, π , and
any ϕ, i.e., for an “in-plane” polar state,

�aP = �P x̂ with �P =
√

1

2

|α⊥(T )|
β1 + β2

. (7)

This phase preserves time-reversal symmetry, but spon-
taneously breaks the SO(2)Lz rotational symmetry. The
continuous degeneracy of the in-plane polar state under
rotation of the polar axis in the plane normal to the strain axis
means that this phase will be subject to the Larkin-Imry-Ma
(LIM) effect, i.e., long-range orientational order of the
in-plane polar order will be destroyed by random fluctuations
in the anisotropy direction.20,30,31

For β2 > 0, which is the prediction of weak-coupling BCS
theory for weak anisotropic scattering,12 the free energy is
minimized for ψ = ±π/2 and ϕ = π/4, i.e., by either of two
degenerate chiral ABM states:

�aABM = �A (x̂ ± iŷ) /
√

2 with �A =
√

1

2

|α⊥(T )|
β1

.

(8)

The ABM state breaks time-reversal symmetry, but retains
continuous axial symmetry U (1)Lz−N by the combining each
element of SO(2)Lz with a gauge transformation. In contrast
to the ABM state in pure 3He, the ABM phase stabilized by
uniaxial anisotropy has its chiral axis l̂ = ±ẑ, locked parallel
or antiparallel to the strain axis. The absence of a continuous
degeneracy associated with rotation of the chiral axis protects
the ABM phase against random fluctuations in the anisotropy
direction.

The geometry for the experiments reported in Ref. 19 is
a cylinder of 3He-aerogel with uniaxial strain εzz � 0.14,
along the cylinder axis (ẑ), an aspect ratio of D/L � 1.44,
and static magnetic field perpendicular to the strain axis
H � 0.3–2.0 kG x̂, as shown in Fig. 2. The authors identified
the ESP-1 phase for this “stretched” aerogel as a chiral ABM
state with chiral axis perpendicular to the strain axis, the
easy-plane configuration shown in Fig. 2. This alignment is at
odds with the GL theory presented here. A transition from the
normal state to a chiral ABM state with l̂ ⊥ ẑ is not allowed by
symmetry. In a uniform uniaxial medium, a chiral ABM state

H

zz

z

x H

zzd

z

x

y

"easy-axis" "easy-plane"

d

y

FIG. 2. (Color online) For the ABM phase confined in homoge-
neous uniaxial-strained aerogel, the chiral axis is aligned along the
strain axis (“easy-axis” alignment) with l̂ ‖ z. Other models assign the
chiral axis to the plane perpendicular to the strain axis (“easy-plane”
alignment) with l̂ ⊥ z. Dipole-locked configurations are shown for
both cases shown with the magnetic field perpendicular to the strain
axis H ‖ x.
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is the equilibrium phase only if the chiral axis is aligned with
the strain axis, i.e., easy-axis alignment with l̂ = ±ẑ.

The ABM state with l̂ ‖ ±ẑ is also at odds with the model
of strain alignment of random cylinders combined with the
alignment energy for a single cylindrical impurity,20,21 which is
argued to favor ABM states with l̂ ⊥ ẑ for an axially stretched
aerogel. To emphasize the conflict of this model with GL
theory, consider an ABM order parameter in a uniform uniaxial
medium, either stretched or compressed, with l̂ ⊥ ẑ. This
requires the two orbital amplitudes that define this ABM order
parameter to belong to different irreducible representations
of the maximal symmetry group, which implies that these
two amplitudes onset with different instability temperatures.
Thus, it is not possible for an ABM state with l̂ ⊥ ẑ to be
the ESP-1 phase in a homogeneous uniaxial medium. In
the following Sec. III, I identify the chiral ABM state with
l̂ ‖ ±ẑ with the ESP-1 phase based on comparison between
the theoretically expected NMR signatures and the NMR
measurements reported in Ref. 19.

III. NMR SIGNATURES FOR THE ESP-1 PHASE

The Zeeman energy for an ESP state defined by �d in a
magnetic field �H is given by33

��Z = gz �A(T )2 (�d · �H)2, (9)

where gz > 0.11 Thus, the ESP state accommodates the field
by orienting the �d ⊥ �H. The magnetization is then given by
γ �S = χ �H, where γ is the gyromagnetic ratio of 3He and χ =
χN is the ABM-phase spin susceptibility, which is unchanged
from that of normal 3He.35 When a pulsed transverse rf field
is applied along the strain axis �H1 = H1 cos(ωt)ẑ ⊥ �H, it
drives the magnetization away from the static field. Leggett’s
equation of motion for the magnetization is

∂t
�S = γ (�S × �H) + γ (�S × �H1) + �RD, (10)

where

�RD = −�d × (∂��D/∂�d) (11)

is the torque from the nuclear dipole energy.4 The latter is
defined by

��D = gD �A(T )2 [1 − (�d · ẑ)2] (12)

for an axially aligned ABM state. The coupling constant gD >

0 is unrenormalized by impurity disorder,11 and thus the dipole
energy is minimized by aligning �d ‖ l̂ ‖ ẑ. For time-dependent
fields, the �d vector is driven by torque from the sum of the
external and internal fields4

∂t
�d = γ �d ×

(
�H − γ

χ
�S + �H1

)
. (13)

Note that for a purely static field, the steady-state condition
γ �S = χ �H is consistent with the minimum of the Zeeman
energy �d ⊥ �H. This condition is also compatible with the
orientation �d ‖ ẑ, which minimizes the dipole energy. This
is the easy-axis geometry shown in Fig. 2.

For small rf excitation, �S and �d execute small excursions
about their equilibrium orientations �S0 = S0x̂ with γ S0 = χH

and �d0 = ẑ, i.e., �S = �S0 + δ�S, �d = �d0 + δ�d with �d0 · δ�d = 0.

For the easy-axis geometry, the linearized equations of motion
reduce to

∂t δ�S = δ�S × �ωL + �S0 × �ω1 − RD �d0 × δ�d, (14)

∂tδ�d = −γ 2

χ
�d0 × δ�S, (15)

with �ωL = γ �H = ωLx̂, �ω1 = γ �H1 = ω1(t)ẑ, and RD =
2gD �A(T )2. The latter determines the longitudinal resonance
frequency for the ABM phase �2

A = γ 2 RD/χ . For the easy-
axis geometry with the rf field along the strain axis the only
components that are excited by the rf field are δdx , δSy , and δSz.
For a single Fourier component of frequency ω, the coupled
Leggett equations are⎛
⎝ ω −i�A 0

+i�A ω −iωL

0 +iωL ω

⎞
⎠

⎛
⎝δDx

δSy

δSz

⎞
⎠ =

⎛
⎝ 0

−iS0 ω1

0

⎞
⎠, (16)

with δDx ≡ (RD/�A)δdx . The retarded linear response func-
tions are then given by⎛

⎝δDx

δSy

δSz

⎞
⎠ = S0 ω1

(ω + iη)2 − (
ω2

L + �2
A

)
⎛
⎝+�A

−iω

−ωL

⎞
⎠, (17)

with η → 0+, which exhibit transverse NMR at ω =√
ω2

L + �2
A, and thus a maximum NMR frequency shift in

the high-field limit ωL � �A:

�ω = ω − ωL � 1
2�2

A

/
ωL. (18)

For finite tipping angle, defined by �S(t = 0+) = S0(cos βx̂ +
sin β ẑ), this result extends to the known result for the dipole-
locked A phase36

�ω = 1
2�2

A/ωL
(

1
4 + 3

4 cos β
)
. (19)

These results for the easy-axis geometry agree quantitatively
with experimental results for the ESP-1 phase in axially
stretched aerogel reported in Ref. 19, and thus the ESP-1 phase
is identified as the ABM state with chiral axis l̂ aligned along
the strain axis.

A test of this identification can be made by reorienting the
“stretched” 3He-aerogel sample with the static field aligned
along the strain axis, i.e., �H = H ẑ. In the high-field limit
ωL � �A, this is a dipole-unlocked configuration with �d0 ⊥
�H � �d0 ⊥ l̂, e.g., �d0 = ŷ located at a maximum of the dipole
potential. Under rf excitation with �ω1 ‖ x̂ for small tipping
angles, the dipole torque is �RD = RD δ dz x̂. The Leggett
equations couple δSx , δSy , and δDz = (RD/�A)δdz, and lead
to the response functions⎛
⎝δSx

δSy

δDz

⎞
⎠ � S0 ω1

(ω + iη)2 − (
ω2

L − �2
A

)
⎛
⎝ −ωL

iω

−iω(�A/ωL)

⎞
⎠, (20)

exhibiting a negative frequency shift of the NMR resonance

�ω � − 1
2�2

A

/
ωL. (21)

By contrast, for the easy-plane configuration of the chiral
axis proposed in Ref. 19, both field orientations yield a
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positive frequency shift of �ω � + 1
2�2

A/ωL. Thus, these two
orientations of the NMR field provide a stringent test of the
identification of the ESP-1 order parameter, and in particular
this GL theory of ESP pairing in a uniformly anisotropic
medium.

IV. INTERLUDE: NORMAL TO 1D TRANSITION

Given that the onset of superfluidity in homogeneously
anisotropic “stretched” aerogel reported in Ref. 19 is well
described by a normal to 2D transition (Tc⊥ > Tc‖) into the
axially aligned ABM state, this theory predicts for the case
Tc‖ > Tc⊥ a normal to 1D transition. In particular, the GL
functional for T � Tc1 ≡ Tc‖ is minimized by �a ≡ 0, and
reduces to

��[b] = α‖(T ) |b|2 + β3 |b|4. (22)

The resulting equilibrium phase is an ESP state with an axially
aligned polar order parameter

�bP = bẑ with b =
√

1

2

|α‖(T )|
β3

. (23)

Global stability requires β3 > 0.
The dipole potential for the ESP polar phase is

��D = 2 gD b(T )2 (�d · ẑ)2. (24)

Thus, in contrast to the axially aligned ABM state, �d ⊥ ẑ in
equilibrium for the strain aligned polar phase. For any other
orientation of �d, the dipole torque is given by

�RD = −4 gD b(T )2 (�d · ẑ)(�d × ẑ). (25)

The corresponding longitudinal resonance frequency for the
polar phase is �2

P = (γ 2/χ ) 4gD b(T )2. Note that the ratio of
the slopes of the square of the longitudinal frequencies for the
ABM and polar phases is given by

∂�2
P

/
∂T |Tc

∂�2
A

/
∂T |Tc

= 2
α′

‖
α′

⊥

β1

β3
. (26)

The Zeeman energy for the polar phase

��Z = gz b(T )2 (�d · �H)2 (27)

is minimized by �d ⊥ �H. Thus, for H ‖ x̂ both the dipole energy
and Zeeman energy are are minimized for �d ‖ ŷ. Transverse
rf excitation with �H1 ‖ ẑ gives a transverse NMR resonance
at ω = ωL, i.e., “zero shift.” However, if we reorient the static
field along the compression axis and the rf field transverse,
e.g., �H1 ‖ x̂, then we obtain positive NMR shift of �ω =
1
2�2

P/ωL in the high-field limit. Note that the polar phase is also
protected by the anisotropy energy from random fluctuations
of the anisotropy axis, and thus expected to exhibit a sharp
NMR line for both orientations.

Recently, 3He has been infused into a new type of high-
porosity aerogel formed from long strands of aluminum
oxide, so-called “nematic aerogels,” exhibiting strong uniaxial
anisotropy.37 3He NMR measurements indicate that the onset
of superfluidity in this medium is to a 1D polar phase.38 If this
interpretation is correct, then this may be the first observation

of a 1D polar phase in superfluid 3He. Added support for this
interpretation is included in Sec. VIII.

V. SECOND ESP PHASE

Returning to the normal to 2D case (Tc⊥ > Tc‖), for weak
uniaxial anisotropy a second phase transition is predicted. The
“bare” instability temperature Tc‖ is renormalized by the 2D
order parameter that develops below Tc⊥ . Whether or not a
second transition occurs depends on the magnitude of Tc⊥ −
Tc‖ and the sign of the interaction terms coupling the 2D and
1D order parameters. In particular, a second transition exists
if the coefficient of the quadratic term for the 1D polar phase
vanishes at Tc2 . For the case in which the axially aligned ABM
state [Eq. (8)] is the equilibrium state for Tc2 � T < Tc1 , the
terms proportional to β5 in Eq. (3) vanish at Tc2 , in which case
the second-order term in the GL functional for T → Tc2 is
given by

��[�aA,b] = ��A(T ) + α̃‖(T ) |b|2 + O(b4), (28)

with

α̃‖(T ) = α‖(T ) + β4 �A(T )2, (29)

where ��A(T ) = 1
2α⊥(T ) �2

A(T ) is the free energy of the
ABM phase. Thus, a second-order instability to a mixed
symmetry phase with b = 0 occurs for α̃‖(Tc2 ) = 0, which
gives

Tc2 − Tc1 =
(

α′
‖

α′
‖ − α′

⊥ β4/2β1

)
(Tc‖ − Tc⊥). (30)

For β4/β1 > 0, we have Tc2 < Tc‖ , but the transition is not
suppressed to zero temperature, at least within GL theory.

Below Tc2 the full GL functional in Eq. (3) must be min-
imized, including the β5 terms since the 2D order parameter
need not remain a purely axial ABM phase. Indeed, one expects
the 2D order parameter to be deformed from a pure ABM state
due to the interaction terms. It is convenient to parametrize
the 2D order parameter below Tc2 in terms of the chiral basis
vectors x̂± = 1√

2
(x̂ ± iŷ):

�a = a+ x̂+ + a− x̂−. (31)

Note that x̂± · x̂∗
± = 1, x̂± · x̂± = 0, and x̂+ · x̂− = 1. It is also

useful to introduce amplitude and phase variables for each
order parameter

a± = �± eiα± , b = �z eiβ . (32)

The GL functional can be conveniently expressed in terms
of u = �2

+, v = �2
−, w = �2

z , and the relative phase variable
� = α+ + α− − 2β:

��[u,v,w,�] = α⊥(u + v) + β1(u + v)2 + β2 4 u v

+α‖ w + β3 w2 + β4(u + v) w

+β5
√

u
√

v w cos �. (33)

The stationarity conditions with respect to u, v, w, and � are
∂��

∂u
= α⊥ + 2β1(u + v) + 4β2 v + β4 w

+ 1

2
β5

√
v

u
w cos � = 0, (34)
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∂��

∂v
= α⊥ + 2β1(u + v) + 4β2 u + β4 w

+ 1

2
β5

√
u

v
w cos � = 0, (35)

∂��

∂w
= α‖ + 2β3w + β4 (u + v) + β4 w

+β5
√

u
√

v cos � = 0, (36)

∂��

∂�
= −β5

√
u
√

v w sin � = 0. (37)

For T < Tc2 , we have u = 0 with both v and w growing
continuously from zero at Tc2 . The difference of Eqs. (34)
and (35) yields

(v − u)

{
4β2 + 1

2
β5

w√
uv

cos �

}
= 0, (38)

and since v − u = 0 and w = 0 for T < Tc2 , we obtain

√
uv = −1

8

β5

β2
w cos �. (39)

This equation constrains the range of cos �: (i) −1 �
cos � < 0 for β5 > 0, while (ii) 0 < cos � � 1 for β5 < 0.
Equation (37) then fixes cos � = ±1 depending on the sign of
β5. The sum of Eqs. (34) and (35), combined with Eq. (39),
gives

u + v = − α⊥
2β1

− β4

2β1
w, (40)

which is used to obtain the free-energy functional for the polar
condensate density w for T < Tc2 :

��[w] = ��A(T ) + α̃‖(T ) w + βw(�) w2, (41)

where

α̃‖(T ) = α‖(T ) − 1

2

β4

β1
α⊥(T ), (42)

βw(�) = β3 − 1

4

β2
4

β1
− 1

8

β2
5

β2
cos2 �. (43)

A second transition develops when α̃‖(Tc2 ) = 0, which is the
instability temperature given in Eq. (30). Below Tc2 , the polar
phase density is given by

w(T ) = − α̃‖
2βw(�)

, (44)

and a reduced thermodynamic potential given by

��(T ) = −1

4

α2
⊥

β1
− 1

4

α̃2
‖

βw(�)
, T < Tc2 . (45)

The ordered state for T < Tc2 with the lowest free energy
is given by the smallest allowed positive value of β̃w(�),
which fixes the internal phase to be cos � = +1 for β5 < 0 or
cos � = −1 for β5 > 0.

The orbital order parameter, above and below Tc2 , can be
expressed in the form

�aA = �A(T ) x̂+, Tc2 < T < Tc1 (46)

where I have assigned the phase α+ = 0 for the axially aligned
ABM phase. The order parameter for the low-temperature

mixed-symmetry phase then takes the form

�A = �+(T ) x̂+ + eiα−�−(T ) x̂− + eiβ�z(T ) ẑ, T < Tc2

(47)

where the order-parameter amplitudes are given by

�A(T ) = �̄A

√
1 − T/Tc1 , T � Tc1 (48)

�̄A =
√

Tc1

2β1

dα⊥
dT

∣∣∣∣
Tc1

(49)

for the axially aligned ABM phase above Tc2 (ESP-1). For the
low-temperature phase, the polar amplitude is given by

�z = �̄z

√
1 − T/Tc2 , T � Tc2 (50)

�̄z =
√

Tc2

2β1

dα̃‖
dT

∣∣∣∣
Tc2

1

β̄w
, (51)

with

β̄w = β̄3 − 1
4 β̄2

4 − 1
8 β̄2

5/β̄2. (52)

Note the dimensionless β parameters are normalized by β1:
β̄i = βi/β1. For T < Tc2 , we can express the two chiral
amplitudes �±(T ) in terms of �z(T ) and Eq. (48) for �A(T ),
extended to T < Tc2 , as follows:

�± = 1

2
(�s ± �d ), (53)

�s =
√

�2
A(T ) − 1

2

(
β̄4 − 1

2
β̄5/β̄2

)
�2

z(T ), (54)

�d =
√

�2
A(T ) − 1

2

(
β̄4 + 1

2
β̄5/β̄2

)
�2

z(T ). (55)

A. Biaxial and chiral order

The low-temperature ESP phase has a continuous degen-
eracy associated with the relative phases of the polar (β) and
ABM amplitudes (α±) defining the mixed-symmetry order
parameter in Eq. (47). For β̄5 > 0, the constraint α+ + α− −
2β = π allows us to parametrize the internal degeneracy by
a single phase angle on the interval 0 � ϕ � 2π , and express
the mixed-symmetry order parameter as

�A = �+(T ) e−iϕ x̂+ − �−(T ) e+iϕ x̂− + �z(T ) ẑ, (56)

up to an overall phase. Note that the chiral basis vectors
transform under gauge transformations as

e∓iϕ x̂± = x̂′
± = (x̂′ ± iŷ′)/

√
2, (57)

where x̂′ = cos ϕ x̂ + sin ϕ ŷ and ŷ′ = − sin ϕ x̂ + cos ϕ ŷ are
rotations of the in-plane orbital axes (x̂,ŷ) about the strain axis
ẑ. This implies that the continuous degeneracy associated with
the internal phase ϕ corresponds to spontaneous breaking of
the axial symmetry of the ABM phase at Tc2 .

Further insight is obtained by considering the product
Ai A

∗
j . This tensor determines observables such as the the

momentum-dependent “gap function” �(p̂), the superfluid
density tensor (ρs)ij , the nuclear dipole-dipole energy ��D,
the intrinsic angular momentum density �L , etc. The tensor
Ai A

∗
j = �ij + Lij separates into a real symmetric tensor
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�ij , and an imaginary, antisymmetric tensor Lij . The real
order-parameter tensor is given by

�ij = 1

2
(�2

+ + �2
−) (x̂i x̂j + ŷi ŷj ) + �2

z ẑi ẑj

−�+�− (x̂i x̂j − ŷi ŷj )

+ 1√
2

�z(�+ − �−) (x̂i ẑj + ẑi x̂j ). (58)

The first line of terms in Eq. (58), which preserve axial sym-
metry, includes the polar distortion ∼ẑi ẑj that varies as �2

z ∼
(1 − T/Tc2 ) below Tc2 . However, the second line ∼(x̂i x̂j −
ŷi ŷj ) exhibits the spontaneously broken axial symmetry of
the ESP-2 phase. Thus, the ESP-2 phase possesses biaxial
anisotropy with a magnitude scaling as �+�− ∼ (1 − T/Tc2 )
below Tc2 . The polar and in-plane distortions conspire to
generate the biaxial anisotropy represented by ∼(x̂i ẑj + ẑi x̂j ),
which scales as �z(�+ − �−) ∼ (1 − T/Tc2 )

1
2 below Tc2 . The

biaxial anisotropy of the ESP-2 phase can be expressed in
terms of semimajor �s ŷ and semiminor �d x̂ axes defining
the in-plane gap distortion by combining the terms using
Eqs. (53)–(55). The continuous degeneracy of the biaxial phase
corresponds to the orientation of the semimajor and semiminor
axes in the plane perpendicular to the strain axis ẑ. Since �ij

is real and symmetric, it can be expressed in diagonal form in
terms of tensor products of an orthonormal triad {m̂,n̂,l̂} that
can be expressed as a rotation of the laboratory axes {x̂,ŷ,ẑ}
as follows:

m̂ = + cos ϑ(cos ϕ x̂ + sin ϕ ŷ) + sin ϑ ẑ, (59)

n̂ = − sin ϕ x̂ + cos ϕ ŷ, (60)

l̂ = − sin ϑ(cos ϕ x̂ + sin ϕ ŷ) + cos ϑ ẑ, (61)

where 0 � ϕ � 2π is the in-plane gauge-rotation angle de-
fined in Eq. (56) that parametrizes the degeneracy of the biaxial
phase, while the polar rotation ϑ is fixed by energetics

cos ϑ = �d/

√
�2

d + 2�2
z, sin ϑ =

√
2�z/

√
�2

d + 2�2
z.

(62)

The resulting biaxial tensor order parameter reduces to

�ij = 1
2

(
�2

d + 2�2
z

)
m̂im̂j + 1

2 �2
s n̂i n̂j . (63)

The zero eigenvalue associated with the eigenvector l̂ means
that ±l̂ are nodal directions of the momentum-space pair
amplitude |�(p̂)| = (p̂i �ij p̂j )

1
2 . Thus, the nodal points as-

sociated with the ABM state (ESP-1 phase) are not destroyed
by the second-order transition to the biaxial ESP-2 phase, but
rotate from the points ±ẑ (corresponding to momenta along
the strain axis) to the points ±l̂. This rotation of the point
nodes off the ẑ axis leads directly to the continuous degeneracy
of the biaxial phase characterized by the orientation of the
nodal points in the plane perpendicular to the strain axis as
shown in Fig. 3. Thus, l̂ defines the spontaneously broken axis
appearing below Tc2 , whose degeneracy is parametrized by the
gauge-rotation angle ϕ.

Furthermore, the nodal directions reflect the chiral nature
of the biaxial phase. This is revealed by the antisymmetric

l̂
zz

bi-axial phase LIM phase

z

x

y
H

d

zz

x

y
H d

y

l̂

FIG. 3. (Color online) Left: The biaxial phase in uniaxially
stretched aerogel is represented by the chiral axis l̂, which can lie
on a cone with angle ϑ relative to the strain axis ẑ. The dipole energy
is minimized by �d ‖ ±l̂. Right: For the disordered biaxial LIM phase,
the chiral axis is distributed on the “degeneracy cone.” The average
dipole energy is minimized for �d ‖ ±〈l̂〉, where 〈l̂〉 = 〈l〉 ẑ is the
LIM-averaged chiral order parameter.

order-parameter tensor Lij , which can be expressed as

Lij = − i

2
�s�d εijk ẑk + i

2

√
2�z�s εijk x̂k. (64)

For T > Tc2 , Lij → −i
2 �A εijk ẑk , which is directly related to

the intrinsic angular momentum density �LA = κa(4m/h̄)�2
A ẑ

for a condensate of Cooper pairs each with orbital angular
momentum +h̄ along ẑ.4,39–41 Below Tc2 , Lij can also be
expressed in terms of a single chiral axis

Lij = − i

2
�s

√
�2

d + 2�2
z εijk l̂k (65)

generating the nodal directions along ±l̂, and an intrinsic
angular momentum density in the biaxial phase given by

�L = κa(4m/h̄)�s

√
�2

d + 2�2
z l̂. (66)

The GL material coefficient κa was calculated by Choi and
Muzikar.41 For pure 3He, the resulting intrinsic angular mo-
mentum density is exceedingly small, L ∼ n[�(T )/Ef ]2 h̄,
where n is the 3He density. However, impurity disorder leads
to larger orbital currents, reflected in κa ∼ (n/Ef ) ξ 2

0 (ξ0/�̄)
where ξ0 = h̄vf /2πTc is the Cooper-pair size and �̄ is
the transport mean-free path resulting from scattering by
impurities. This leads to an intrinsic angular momentum
density of order L ∼ nh̄(ξ0/�̄)[�(T )/2πTc]2.41 Experimental
observation of the intrinsic angular momentum density would
provide a direct signature of chiral order predicted for both
ESP phases discussed here for 3He in uniaxially stretched
aerogel.

VI. NMR SIGNATURES OF THE ESP-2 PHASE

The recent report of the discovery of two chiral superfluid
phases of 3He in uniaxially stretched areogel19 is based on
their NMR signatures. The identification of the ESP-1 as the
axially aligned ABM phase was discussed in Sec. III. The
authors of Ref. 19 tentatively identified the ESP-2 phase s a
textural transition of an easy-plane ABM state. However, the
theory presented here demonstrates that this identification is
not allowed by symmetry for superfluid 3He infused into a
uniformly anisotropic aerogel.

Here, I calculate the NMR signatures of the biaxial phase
predicted for T � Tc2 , and compare with the observed NMR
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spectra for the low-temperature (ESP-2) phase. This leads to
the identification of the ESP-2 phase as a “biaxial LIM phase”
resulting from orientational disorder induced by the random
potential, i.e., the Larkin-Imry-Ma (LIM) effect,30,31 discussed
in the context of 3He-aerogel by Volovik.20,42 First consider
the spin dynamics for a homogeneous biaxial phase.

The Zeeman energy takes the same form as Eq. (9) for the
axially aligned ABM

��Z = gz �B(T )2 (�d · �H)2, (67)

but with the order-parameter amplitude

�2
B = �2

A + (
1 − 1

2 β̄4
)
�2

z. (68)

The nuclear dipolar potential ��D = 2gD di �ij dj is
simply expressed in the basis of biaxial eigenvectors {m̂,n̂,l̂}:

��D = gD
(
�2

d + 2�2
z

)
(m̂ · �d)2 + gD �2

s (n̂ · �d)2. (69)

The dipole energy is minimized by orienting �d parallel to the
chiral axis l̂, the latter of which is degenerate in orientation on
a cone centered about the ẑ axis defined by angle ϑ as shown
in Fig. 3. For the homogeneous biaxial phase, the Zeeman
energy resolves the continuous degeneracy by orienting the
dipole-locked biaxial state with �d ‖ l̂ ⊥ �H, i.e., ϕ = 0,π . For
any other orientation of �d, the dipole torque is given by

�RD = −2gD
[ (

�2
d + 2�2

z

)
(�d · m̂)�d × m̂ + �2

s (�d · n̂)�d × n̂
]
.

(70)

The linearized Leggett equations are of the same form as
Eqs. (10) and (13), but with �d0 = l̂ and �RD given by

�RD = ↔
RD · (�d0 × δ�d), (71)

where

↔
RD = −Rs(m̂m̂ + l̂ l̂) − Rd n̂n̂, (72)

Rs = 2gD�2
s , and Rd = 2gD(�2

d + 2�2
z).

For the geometry in Fig. 3, γ �S0 = χH, �ωL = γ �H = ωLŷ,
and �ω1 = γ �H1, and for the dipole-locked biaxial state with
�d0 = l̂ ⊥ �H, the chiral axis is confined in the x-z plane, and the
biaxial triad can be expressed in the NMR coordinates: m̂ ≡
x̂′ = cos ϑ x̂ − sin ϑ ẑ, n̂ = ŷ, and l̂ ≡ ẑ′ = cos ϑ ẑ + sin ϑ x̂. In
this basis, the linearized equations separate into a pair of
equations, for the longitudinal response,(

δDx ′

δSy

)
= − (−iRd/�d )(ŷ · �ω1)

(ω + iη)2 − �2
d

(
ω

−i�d

)
(73)

with δDx ′ ≡ Rdδdx ′/�d and

�2
d ≡ γ 2

χ
2gD

(
�2

d + 2�2
z

)
. (74)

The pole at ω = �d is the longitudinal NMR resonance
frequency, which is excited only if ŷ · �ω1 = 0. The transverse

spin response functions are given by⎛
⎝δSx ′

δDy

δSz′

⎞
⎠ = χ/γ 2

(ω + iη)2 − (
ω2

L + �2
s

)

×

⎛
⎜⎝

+iωωL(ẑ′ · �ω1) − (
ω2

L + �2
s

)
(x̂′ · �ω1)

+�s[ωL(ẑ′ · �ω1) + iω(x̂′ · �ω1)]

−ωL[ωL(ẑ′ · �ω1) + iω(x̂′ · �ω1)]

⎞
⎟⎠, (75)

with �2
s ≡ (γ 2/χ ) 2gD�2

s given by

�2
s = (γ 2/χ ) 2gD

[
�2

A − 1
2

(
β̄4 − 1

2 β̄5/β̄2
)
�2

z

]
. (76)

The transverse resonance is at ω =
√

ω2
L + �2

s , with a max-
imum positive NMR frequency shift in the high-field limit
ωL � �s given by

�ω � 1

2
�2

s /ωL = γ 2

χωL
gD

[
�2

A − 1

2

(
β̄4 − 1

2
β̄5/β̄2

)
�2

z

]
.

(77)

The predicted transverse shift is continuous at T = Tc2 , i.e.,
�ω|Tc2

= 1
2�2

A/2ωL|Tc2
, but with a discontinuity in slope

∂�ω/∂T |Tc2
, governed by the polar distortion �z, and GL

coefficients β̄2,4,5. For β̄4 − 1
2 β̄5/β̄2 > 0, we expect the polar

distortion to lead to a reduction in the slope of the NMR shift
below Tc2 .

However, as shown in Fig. 4, the data for the NMR shifts of
3He in uniaxially stretched aerogel and reported by Pollanen
et al.19 show a more dramatic temperature dependence for the
frequency shift below the second transition: a negative “jump”
identified with Tc2 , followed by an increasing shift below
Tc2 , but with a reduced slope compared to the ESP-1 phase
above Tc2 . In addition, the NMR linewidth (shown in Fig. 3 of
Ref. 19), which is sharp and virtually unchanged in the axially
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FIG. 4. (Color online) NMR frequency shifts for both ESP-1 and
ESP-2 phases reproduced from Ref. 19 for pressures: 18 bar (green
square), 22 bar (blue square), and 26 bar (red square). Theoretical
curves for the same pressures are based on the predicted NMR shifts
for the axially aligned ABM state (ESP-1) and the biaxial LIM phase
(ESP-2) with a predicted negative jump of 1

2 at Tc2 . The slopes are
fits that are consistent with the theoretically predicted temperature
dependencies for both ESP-1 and ESP-2 phases.
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aligned ABM phase (ESP-1), increases rapidly below Tc2 . Both
the jump in �ω and the increased linewidth suggest that the
ESP-2 phase exhibits some form of orbital disorder responsi-
ble for inhomogeneous broadening of the NMR spectrum and
a reduction in the first moment (the shift). In the following, I
consider orbital disorder, induced by random anisotropy, and
its effects on the NMR spectrum for the biaxial phase.

First, consider the axially aligned ABM phase above Tc2

for which the chiral axis is aligned along the strain axis l̂ = ẑ.
There is no continuous orientational degeneracy in the direc-
tion of the chiral axis. Thus, fluctuations in the local anisotropy
axis of the aerogel contribute to the suppression of Tc and the
magnitude of the order parameter, but long-range orientational
order is preserved because there is a finite-energy cost to
long-wavelength transverse fluctuations of the chiral axis.

A. Effect of random anisotropy on the biaxial phase

By contrast, the biaxial phase has a continuous rotational
degeneracy corresponding to orientation of the chiral axis l̂,
on a cone with angle ϑ fixed by the polar component of the
order parameter [Eq. (62)] as shown Fig. 3. Fluctuations in
the local anisotropy of the aerogel medium couple to the
components of l̂ transverse to the strain axis and destroy
long-range orientational order of the chiral axis:20,30,31 more
precisely, the transverse components of the chiral axis. In
particular, the random-field averages of the biaxial triad are

〈m̂〉 = sin ϑ ẑ, 〈n̂〉 = 0, 〈l̂〉 = cos ϑ ẑ, (78)

and the correlation function for the transverse components of
the chiral axis δl̂ = l̂ − 〈l̂〉,

〈δl̂i(r)δl̂j (r′)〉 ≈ 1
2 sin2 ϑ (δij − ẑi ẑj ) e−|r−r′ |2/2ξ 2

LIM , (79)

exhibit short-range order up to a length scale ξLIM that depends
on the microscopic model for the random anisotropy field
and its coupling to the orbital order parameter (see Sec. VII).
Nevertheless, different models for the random anisotropy field
lead to orbital domain sizes that are typically smaller than the
dipole coherence length.

In the limit ξD � ξLIM, the spin-orbit coupling of �d and
l̂, and thus the NMR frequency shift, average to zero for a
globally isotropic aerogel.11,42 However, for the biaxial state
in a globally anisotropic aerogel the random anisotropy field
averaging leads to a spin-orbit coupling of �d and 〈l̂〉 ‖ ẑ:

〈��D〉 = −2gD
[

1
2�2

A − (
1 + 1

4 β̄4
)
�2

z

]
(�d · ẑ)2, (80)

that is the same form as that for the axially aligned ABM phase
(ESP-1), resulting in a transverse shift

�ω = γ 2

χωL
gD

[
1

2
�2

A −
(

1 + 1

4
β̄4

)
�2

z

]
, (81)

which is half the transverse shift of the ESP-1 phase for T →
Tc2 from below. Thus, the orbitally disordered biaxial phase
exhibits a “negative jump” of the NMR shift to half that of
the ESP-1 NMR shift and a reduction in the slope of the
shift for T < Tc2 . This result is in good agreement with the
observed temperature dependence of the NMR shifts reported
by Pollanen et al.19 as shown in Fig. 4. The theoretical slopes
are fit to the experimental results, and are in agreement with
theoretical expectations based on Eqs. (18) and (81).

The predicted jump of 1
2 is the maximum reduction in

the shift resulting from the averaging the triad of orbital
vectors over a cone with fixed polar angle ϑ . The magnitude
of the jump is reduced if the transverse components δl̂
are not uniformly distributed on the cone shown in Fig. 3.
Furthermore, since sin ϑ ∼ �z(T ) → 0 as T → Tc2 we have
l̂ → ẑ. Thus, averaging on the collapsing cone becomes
irrelevant sufficiently close to Tc2 , and we must recover
the full EPS-1 NMR shift continuously over a narrow
temperature “width” of order δTc2 � Tc2 (ξLIM/ξD)2 	 Tc2 as
the cone angle closes towards the axially aligned ABM phase
(see Sec. IX). Such a crossover very close to Tc2 is visible
in Fig. 4 with observed “widths” of order δTc2 ≈ 0.1 mK,
providing an estimate for the orbital domain size of
ξLIM ≈ 1

3ξD ≈ 5 μm at 18 bar. Orbital domains of size
ξLIM � ξD also provide a plausible explanation for the onset
of increased NMR linewidth observed just below Tc2 . But, are
such large domains of the orbital order parameter plausible?

Volovik addressed the issue of orbital disorder in superfluid
3He induced by random anisotropy20,42 and derived a formula
for the domain size based on arguments similar to those of
Larkin30 and Imry and Ma.31 Volovik’s result for the LIM
correlation length20

ξVolovik
LIM = ξa(ξ0/d)2 (82)

is based on (i) anisotropy derived from randomly oriented
cylinders of mean spacing ξa ≈ 20 nm and diameter d ≈
3 nm, representing the aerogel, and (ii) the orientational energy
for a single cylindrical impurity in bulk 3He-A calculated by
Rainer and Vuorio, Ea ≈ Tc k2

f ξa d.21 This gives an orbital
correlation length ξVolovik

LIM � 1 μm, weakly pressure dependent
and an order of magnitude or more smaller than the dipole
coherence length ξD (black curves in Fig. 6). The ratio
ξVolovik

LIM /ξD decreases dramatically at lower pressures. Implicit
in this calculation is the assumption that the single impurity
result of Ref. 21 extends to a distribution cylindrical impurities
with typical spacing ξa that is less than or the same order as the
pair correlation length ξ0. Indeed, the fractal structure of the
aerogel on length scales shorter than ξa may be responsible
for weaker local anisotropy and thus a larger orbital domain
size than the estimate from Eq. (82).22

VII. ANISOTROPIC SCATTERING MODEL

Silica aerogels grow by gelation of silica clusters. The
resulting structure factors measured by SAXS on high-
porosity silica aerogels are in good agreement with numerical
simulations based on diffusion-limited-cluster aggregation
(DLCA).25,26 A DLCA simulation of 98% aerogel is presented
in Fig. 5 showing structures that are locally anisotropic, as
well as statistically self-similar over several decades in length
scales. The aerogel correlation length ξa is characteristic of
the largest “void” dimension, while the microscopic scale is
indicated by the “strand” width d 	 ξa in Fig. 5. Note that
local anisotropy results from clusters and strands with multiple
length scales.

In the following, I formulate a model of the random field
in aerogels, including random anisotropy, in terms of the
distribution of ballistic paths for quasiparticles propagating
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FIG. 5. (Color online) Local anisotropy of silica clusters and
strands based on a DLCA simulation for the growth of a 98% porous
aerogel. Statistical self-similarity is observable over three decades of
length scales. The aerogel correlation length is of order ξa � 30 nm,
while the strand size is of order d � 2 nm.

through the open regions of aerogel. Elastic scattering by the
fractal structure limits ballistic propagation. The local cross
section, or scattering rate, is then the measure of random
anisotropy. Such a description was discussed by Thuneberg
et al.11,12 as a course-grained model of random anisotropy
compared to the atomic scale d of a silica strand. In the
following, I expand on this model.

The scattering of quasiparticles by the aerogel is formulated
in terms of the amplitude u(p,p′) for quasiparticle transitions
from p → p′ for a random distribution of scattering centers
(“strands” or “clusters”) with average density ns . At low
temperatures T 	 Ef , the elastic scattering rate is

1

τp,p′
≡ w(p,p′) = π ns Nf |u(p,p′)|2, (83)

where Nf is the quasiparticle density of states at the Fermi
energy. If the scattering medium is locally isotropic, the
scattering rate may be expanded in Legendre functions,
e.g., w(p,p′) = w0 + w1 p̂ · p̂′ + · · · , where I include s-
and p-wave scattering. However, the scattering centers are
anisotropic. On mesoscopic length scales d 	 δr < ξa the
anisotropy is locally well defined, and the scattering rate
will depend on the directions of the incident and scattered
quasiparticle momenta relative to a set of anisotropy axes
defining a local region of scattering centers. This is illustrated
by considering a medium of randomly distributed but identical
cylindrical “strands.” The scattering medium is then locally
uniaxial and the scattering rate is determined by the local
orientation of the anisotropy axis of the strand, defined by
ŝ.43 For this “strand model” the scattering rate in the s-p
approximation,

1

τp,p′
= w0 + p̂i wij p̂′

j (84)

is parametrized by an isotropic scattering rate w0 and a uniaxial
tensor

wij = w⊥ (δij − ŝi ŝj ) + w‖ ŝi ŝj (85)

with p-wave scattering rates w|| and w⊥ for scattering
preferentially along the symmetry axis and perpendicular to

the symmetry axis, respectively. The random anisotropy field
for the strand model is then encoded in the distribution of of the
local anisotropy axis ŝ(r).44 For a globally isotropic medium,
the anisotropic scatters remain oriented over a finite correlation
length ξs defined by the decay of the orientational correlations

〈ŝ(r) · ŝ(0)〉 ∼ e−r2/2ξ 2
s , (86)

where the configurational average can be defined in terms
of a joint probability distribution for the orientation of all
impurities. A reasonable estimate for this correlation length
based on the DLCA simulations is the aerogel correlation
length ξa ≈ 30–50 nm.

The relative scale of the orientational correlations to that
of the pair correlation length ξ0 is an important parameter.
For ξs � ξ0, scattering by the aerogel structure leads to
anisotropic pair-breaking effects on the orbital states of p-wave
Cooper pairs, and a splitting of the superfluid transition for
Cooper pairs with orbital motion parallel and perpendicular
to the anisotropy direction ŝ, i.e., Tc⊥ = Tc||, as discussed
in Sec. VIII. In the opposite limit d 	 ξs 	 ξ0, the aerogel
medium is on average isotropic on length scales larger than ξs .
As a result, the orbital p-wave components are unstable at the
same transition temperature, i.e., there is a single Tc. However,
the transition and the relative stability of the possible phases
will generally be modified by the short-range anisotropic
scattering. In both limits, random anisotropy leads to formation
of orbital domains (LIM effect) on length scales that are
typically longer than either the aerogel or pair correlation
lengths ξs and ξ0. For 3He in low-density silica aerogels,
ξs � ξ0, with the two correlation lengths being comparable
at high pressures p � 15 bar. And as I discuss in Sec. IX,
the LIM effect is controlled not only by competition between
orbital order and orientational energetics at the scale of ξs ,
but also by random anisotropy in ballistic transport. The latter
determines the random field for Cooper pairs when ξs � ξ0.

VIII. LONG-RANGE ORDER OF ANISOTROPIC
IMPURITIES

Silica aerogels with exceptional homogeneity and global
anisotropy have been fabricated,45 and global anisotropy can
be induced by uniaxial compression of an isotropic aerogel.
Global anisotropy in these aerogels corresponds to long-range
order of the locally anisotropic scattering medium

〈ŝ(r) · ŝ(0)〉 −−→
r�ξs

s2, (87)

where 0 < s2 < 1 measures the degree of long-range orien-
tational order along the uniaxial anisotropy, or strain, axis ẑ.
Random fluctuations of the anisotropy direction remain, but
are uncorrelated over distances larger than ξs .

Long-range order of the strands is directly observable in
transport properties of normal 3He in a globally anisotropic
aerogel. At temperatures below the crossover scale T � ≈
20–30 mK, the transport of entropy and magnetization is
determined by elastic scattering of quasiparticles from the
aerogel structure. For example, the thermal conductivity
becomes anisotropic below T � (Ref. 46):

κij = 2π2

9
Nf (vf T ) �̄ij , (88)
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where �̄ij is the transport mfp tensor obtained from the
Boltzmann-Landau transport equation with the collision in-
tegral determined by the elastic scattering rate in Eq. (84):

�̄ij = �̄⊥(δij − ẑi ẑj ) + �̄‖ ẑi ẑj , (89)

where �̄⊥ = vf τ⊥ (�̄‖ = vf τ‖) is the transport mfp for heat
transport perpendicular (parallel) to the anisotropy axis.
Hydrodynamic transport averages over length scales long
compared to ξs , thus long-range orientational order determines
the anisotropy of the transport coefficients with

1

τ⊥
= 1

τ̄
+ 1

3
�,

1

τ‖
= 1

τ̄
− 2

3
�, (90)

1

τ̄
= w0 − 1

3

(
2

3
w⊥ + 1

3
w‖

)
, (91)

� = −1

3
s2 (w⊥ − w‖). (92)

Note that the anisotropy in the scattering rates � scales
as the product of the long-range orientational order of the
anisotropic “impurities” ∼s2, and the (local) anisotropy of
the p-wave scattering rates ∼(w⊥ − w‖). In the absence of
orientational fluctuations (s = 1) we obtain the maximal
anisotropy in the scattering rates: 1/τ⊥ = 1/τ0 − 1

3w⊥,
1/τ‖ = 1/τ0 − 1

3w‖, and (1/τ⊥ − 1/τ‖) = − 1
3 (w⊥ − w‖). In

the absence of long-range orientational order (s = 0), � = 0,
and the local anisotropy gives an average isotropic scattering
rate and mfp, �̄ = vf τ̄ .

The mfp anisotropy obtained from Eqs. (90)–(92) deter-
mines the splitting of the superfluid transition when the aerogel
correlation length ξs is smaller than the size of Cooper pairs.
This is the homogeneous scattering limit in which quasiparticle
scattering from the aerogel is the dominant pair-breaking
effect.11,12 For a globally anisotropic scattering medium, the
pair-breaking effect is also symmetry breaking, lifting the de-
generacy of the 3D p-wave orbital states and splitting the tran-
sition for pairing into 2D orbital states (p̂x,p̂y), and pairing into
the 1D polar state p̂z.11,13 The corresponding second-order GL
coefficients that enter Eq. (3) for 2D and 1D orbital states are11

ᾱ⊥,‖ = 1
3 Nf [ln(T/Tc) − S1(x⊥,‖ Tc/T )], (93)

where x⊥,‖ = ξ0/�̄⊥,‖ are the anisotropic pair-breaking
parameters, and S1(z) is the digamma function

S1(z) =
∞∑

n=0

[
1

n + 1
2 + 1

2z
− 1

n + 1
2

]
. (94)

The instability temperatures for superfluid 3He in a globally
anisotropic medium are given by α(Tc⊥,‖) = 0, and are the
solutions to the Abrikosov-Gorkov equation47

ln(Tc/Tc⊥,‖ ) = S1(x⊥,‖ Tc/Tc⊥,‖ ). (95)

In the linear pair-breaking regime, we obtain

Tc⊥,‖ � Tc

(
1 − π2

4

ξ0

�̄⊥,‖

)
, (96)

where ξ0 = h̄vf /2π kB Tc0 (Tc0 ) is the pair correlation length
(transition temperature) for pure 3He. Thus, for �̄⊥ > �̄‖
the first instability will be to a 2D orbital state with the 2D
orbital order parameter �a = 0, while for �̄⊥ < �̄‖ the first

instability will be into the 1D polar state with b = 0. The
orbital representation that is realized at the first instability for
a “stretched” or mechanically compressed aerogel depends
on the microscopic mechanism(s) for the development of
global anisotropy in the ballistic path length distribution for
quasiparticles in anisotropic aerogel. The splitting of the
transition

Tc⊥ − Tc‖

Tc

� −π2

4
ξ0

(
1

�̄⊥
− 1

�̄‖

)
(97)

is proportional to the difference in the mean scattering rates,
which scales as (1/τ⊥ − 1/τ‖) = − 1

3 s2 (w⊥ − w‖). Thus, the
splitting of the transition may be significantly smaller than
the suppression of the superfluid transition from that of pure
3He, which depends on the total scattering rate [Eq. (90)].
This provides a natural explanation for the relatively large-Tc

suppression and relatively small-Tc splitting shown Fig. 1,
which at 18 bar is a suppression of Tc − Tc⊥ � 0.84 mK, and
a splitting Tc⊥ − Tc‖ less than 0.28 mK. This leads us to a
prediction for 3He in the stretched aerogel.19 If long-range
order of anisotropic scattering centers is the mechanism for
stabilizing the 2D chiral ABM state in stretched aerogel, then
measurements of heat transport in normal 3He should show
anisotropy with κ⊥/κ‖ = �̄⊥/�̄‖ > 1. Furthermore, if the ESP-
2 state is the signature of the biaxial phase associated with the
onset of the polar distortion and a nonvanishing 0 < Tc‖ < Tc⊥ ,
then the ratio for κ⊥/κ‖ can be predicted from the splitting of
the transitions and the β parameters obtained from NMR and
thermodynamic measurements on these phases.

Finally, note that for sufficiently strong anisotropy, the sec-
ond instability may be suppressed to zero, or to temperatures
well outside the GL limit. This limit is likely relevant to
superfluid 3He reported in the newly discovered “nematic”
aerogels with mfp’s of �̄‖ = 850 nm and �̄⊥ = 450 nm based
on measurements of spin diffusion in the normal state.37

The anisotropy ratio �̄‖/�̄⊥ ≈ 2 favors a transition from the
normal state into the 1D polar phase based on this theory
of homogeneous anisotropic pair breaking. Nematic aerogels
appear to be inhomogeneous on the scale of ξ0, so this theory
may account for a transition to the polar state near Tc‖ , where
ξ (T ) � ξa , but is likely outside the regime of validity to
describe the low-temperature phases.

IX. RANDOM ANISOTROPY

The biaxial phase described in Secs. V and VI that
onsets below Tc2 has a continuous degeneracy corresponding
to rotations of the orbital triad {m̂,n̂,l̂} about the uniaxial
“stretch” axis ẑ. The latter is interpreted here as a manifestation
of long-range orientational order of the scattering centers with
〈ŝ〉 = sẑ. Fluctuations in the local anisotropy axis s′(r) =
ŝ − sẑ couple to the orbital order parameter and partially
destroy the long-range orientational order of the biaxial
phase.

The random anisotropy energy is defined by the fluctuations
in the pair-breaking effect given by

��an =
∫

V
d3 δ αij (r) Ai A

∗
j , (98)
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where the leading-order term of δαij (r) = αij (r) − ᾱij for
weak global anisotropy (s2 	 1) is

δαij = − 1
2 δα

(
s′
i(r) s′

j (r) − 1
3

)
, (99)

δα = (π2/4) Nf ξ0 (1/�‖ − 1/�⊥) [S2(x̄)/S2(0)] . (100)

Note that the random anisotropy is enhanced compared
to the global anisotropy by the factor 1/s2, i.e., (1/�‖ −
1/�⊥) = 1

3 (w‖ − w⊥) = (1/�̄‖ − 1/�̄⊥)/s2. Also, I include
the mean-field pair-breaking effects with x̄ = h̄/2πTcτ̄ =
ξ0/�̄, the suppression of Tc by impurity scattering and the
functions

Sp(x) ≡
∑
n�0

(
n + 1

2
+ 1

2
x

)−p

, p > 1 (101)

that renormalize the GL coefficients.11,48

The random anisotropy energy obtained from Eqs. (98)–
(100) and (63), the completeness relation δij = m̂im̂j +
n̂i n̂j + l̂i l̂j and �2

z 	 �2
s,d for T � Tc2 becomes

��an = −1

2
δα �2

s

∫
V

d3r

[
[s′(r) · l̂(r)]2 − 1

3

]
, (102)

where l̂(r) is the local chiral axis in the biaxial phase. The
mean field orientation for l̂ is fixed on the cone shown in
Fig. 3. The transverse orbital order parameter δl̂ = l̂ − l̄zẑ is
degenerate and can point in any direction in the base of the
cone.

The fluctuations in the anisotropy of the scattering medium
are correlated on the scale of ξs . Thus, the minimum of the
random anisotropy energy is achieved by having the chiral
axis l̂(r) “track” the transverse fluctuations in anisotropy, i.e.,
δl̂(r) ‖ s′

⊥(r). However, tracking the anisotropy on the scale of
ξs costs gradient energy of order

��grad = κ �2
s

∫
V

d3r |∇i l̂j |2 ≈ V
(
κ sin2 ϑ �2

s ξ−2
s

)
,

(103)

with κ = 4
15 [7ζ (3)/8]Nf ξ 2

0 [S3(x̄)/S (0)],11 which gives a
gradient energy that is larger than the condensation energy for
ξs < ξ0 and T < Tc2 . The balance between the local anisotropy
energy and the gradient energy leads to the partial destruction
of long-range orbital order for the biaxial phase in which
〈l̂〉 = l̄z ẑ, but long-range order of the transverse orbital order
parameter δl̂ is destroyed.

The competition between the random anisotropy energy
[Eq. (102)] and the gradient energy leads to short-range
transverse orbital order over length scales ξLIM � ξs , i.e., the
Larkin-Imry-Ma (LIM) domain size. The argument here is
similar to that discussed by Volovik,20 but with different energy
and length scales ultimately determining ξLIM. In the presence
of the random anisotropy field, the biaxial phase can avoid
large gradient energies by allowing δl̂ to remain nearly uniform
over length scales of order ξLIM � ξ0 > ξs . Thus, ξLIM is the
domain size characterizing the short-range transverse orbital
order. The cost in gradient energy to bend the order parameter
over the same length scale is significantly reduced compared
to Eq. (103), but so too is the gain in the random anisotropy
energy. The latter is reduced by the fraction of anisotropy

domains with s′ favorably aligned with the transverse order
parameter δl̂ within an orbital domain. Within an orbital
domain of volume VLIM = ξ 3

LIM, the mean number of domains
of the anisotropy axis s′

⊥ is Ns = (ξLIM/ξs)3 � 1. The fraction
of anisotropy domains that can favorably be aligned is the
fluctuation ratio fan = �N rms

s /Ns = 1/
√

Ns ≈ (ξs/ξLIM)3/2.
With this estimate, the optimal domain size is determined by
minimizing the fluctuation of the anisotropy energy together
with the gradient energy20,31

��fluc = V sin2 ϑ �2
s

(− 1
3 δα (ξs/ξLIM)3/2 + κ ξ−2

LIM

)
,

(104)

which gives the LIM domain size

ξLIM =
(

4κ

δα

)2

ξ−3
s = CL

ξ 2
0 ξ−3

s

[1/�‖ − 1/�⊥]2
, (105)

CL(x̄) =
(

4

15

)2 (
4

π

)4 (
7ζ (3)

8

)2 [
S3(x̄)/S3(0)

S2(x̄)/S2(0)

]2

, (106)

where CL(x̄) includes the renormalization of κ and δα due
to the breaking of Cooper pairs by quasiparticle scattering,
parametrized by x̄ = ξ0/�̄. In the limit x̄ → 0, CL(0) � 0.21.

Figure 6 shows the pressure dependence of the LIM domain
size calculated from Eqs. (105) and (106) for an anisotropic
aerogel defined by an average mfp, �̄ = 120 nm and the random
field anisotropy of the aerogel expressed in terms of the
anisotropy in the mfp’s, δ�/� = 2%–20%.49 The mean-field
effect of impurity scattering is included via the impurity scat-
tering renormalization of the transition temperature Tc/Tc0 ,
the gradient coefficient κ ∼ S3(x̄)/S3(0), and the random
anisotropy coefficient δα ∼ S2(x̄)/S2(0). I also show the
pressure dependence of the dipole coherence length. The LIM
effect on the NMR frequency shift depends on the relative
size of the orbital domains to the dipole coherence length
ξD = √

κ/gD since �d can adjust to the local orbital order
only on length scales larger than ξD.20 The dipole coupling
constant is unrenormalized by impurity scattering,11 and is
fixed at each pressure by the measured bulk A-phase NMR
shift.50 The resulting curves for ξD for bulk 3He (dotted red
curve) and 3He-aerogel for �̄ = 120 nm (solid red curve) are
shown for comparison with ξLIM. Note that the critical pressure
for this aerogel, below which superfluidity is suppressed,
is pc ≈ 8 bar. The main result is that the orbital domain
size is typically ξLIM � ξD over the full pressure range, and
may be larger than ξD for relatively weak random anisotropy
��/� � 5%.

Also shown in Fig. 6 is the LIM domain size obtained
from the rigid cylinder model of random anisotropy proposed
by Volovik; the solid black curve includes the impurity
renormalization of the gradient coefficient [not shown in
Eq. (82)]. The suppression of ξVolovik

LIM → 0 for p → pc is
likely an artifact of the single-impurity model for the random
anisotropy energy from Rainer and Vuorio.21 Away from
pc ξVolovik

LIM < 1 μm over the full pressure range, implying
that orbital order is destroyed by a relatively strong random
anisotropy field over length scales much smaller than ξD at
all pressures (ξVolovik

LIM ≈ 0.77 μm compared to ξD ≈ 16.1 μm
at 18 bar). The conclusion here is that the random anisotropy
field that is relevant to the destruction of orbital order, and
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FIG. 6. (Color online) Larkin-Imry-Ma domain size for the biaxial orbital order parameter as a function of pressure for aerogel with average
mfp � = 120 nm, strand correlation length ξs = 20 nm, and anisotropy ranging from ��/� = 2%–20% (blue-green curves). Volovik’s result
for the LIM length (black dashed curve), while the (black solid curve) includes the renormalization of the parameters defining the LIM length
due to pair breaking for an aerogel with Tc(p) determined by x̄ = ξ0/�̄. The dipole coherence length ξD is shown as the (solid red curve) for
the same mfp, and for pure 3He as the (dashed red curve). The point (red square) at 18 bar is ξLIM ≈ 5.3 μm determined from the width of the
negative jump in the NMR shift shown in Fig. 4.

the LIM domain size, can be much weaker, originating from
mesoscale structures that are much larger than atomic scale
d 	 δr 	 ξa , and are responsible for local anisotropy in the
quasiparticle scattering rate.

In the weak anisotropy limit, the LIM averaging of the
dipole energy breaks down and we expect a distribution
of NMR shifts resulting from the distribution of spatial
variations of the dipole energy on the scale ξLIM ∼ ξD. The
NMR spectra for the stretched aerogel, particularly the rapid
reduction in the shift below Tc2 and the broadening of the
line, suggests that ξLIM � ξD. In this case, the orienting effect
on the orbital order parameter of the biaxial phase by the
dipole energy can be treated perturbatively. For T 	 Tc2 ,
the polar distortion is established, l̂ is oriented off the
anisotropy axis, and the transverse orbital order parameter
δl̂ = sin ϑ(cos ϕx̂ + sin ϕŷ) is degenerate on the cone in Fig. 3.
Optimizing the random anisotropy energy and the gradient
energy for the transverse orbital order leads to the optimal
orbital domain size given by Eq. (105). These two energies
are of the same order with an overall magnitude that scales
as �2

s sin2 ϑ ∼ �2
z ∼ (1 − T/Tc2 ). Thus, sufficiently close to

Tc2 , the dipole energy will become comparable to the optimized

random field domain-alignment energy. The dipole energy can
now compete to align the transverse orbital order parameter
and recover dipole energy that was “lost” by averaging δl̂ on
the cone. At high fields ωL � �A, �d is fixed perpendicular
to the field, e.g., �d ⊥ ŷ in Fig. 3. The competition between
the fluctuation contribution to the dipole energy and random
field domain-alignment energies converts the jump in �ω at
Tc2 into a crossover with a transition width δTc2 , given by the
temperature at which the “missing” dipole energy becomes
equal to the stiffness of the biaxial LIM state

1

2
gD�2

A = κ sin2 ϑ �2
s ξ−2

LIM � 2 κ �z

(
Tc2 + δTc2

)2
ξ−2

LIM

(107)

� δTc2 = Tc2 × 1

4

(
�A

�̄z

)2 (
ξLIM

ξD

)2

. (108)

For the �̄z/�A ≈ 2 at Tc2 , we obtain the estimate of ξLIM ≈
5 μm from the observed transition width of δTc2/Tc2 ≈ 0.1
at 18 bar, which based on random field anisotropy in the
scattering rate corresponds to ��/� � 11%. For comparison,
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the authors of Ref. 19 characterize the “stretched” aerogel in
their NMR experiments by uniaxial strain εzz � 14%.

X. SUMMARY AND CONCLUSIONS

The discovery of equal-spin-pairing (ESP) phases of super-
fluid 3He in highly porous anisotropic silica aerogels provides
us with a unique condensed matter system for investigation of
remarkable phases that may be realized in systems with broken
continuous symmetries and competing effects from disorder.
A Ginzburg-Landau (GL) theory for orbital p-wave phases
in a medium with both global and random anisotropy was
developed. Global anisotropy gives rise to multiple ordered
phases that are characterized as 2D (chiral or in-plane polar),
1D axial aligned polar states, and a “mixed”-symmetry phase
that exhibit both biaxial and chiral order, depending on
the nature of the global anisotropy, e.g., stretched versus
compressed anisotropy. The 2D chiral phase is an ABM state
with the chiral axis aligned along the anisotropy axis in the case
of “stretched” aerogels, i.e., l̂ = ±ẑ. The NMR signatures of
the 2D chiral phase with l̂ ‖ ±ẑ are in quantitative agreement
with the ESP-1 phase of 3He in “stretched aerogel” reported
in Ref. 19, including a large transverse shift, the tipping angle
dependence, and a narrow linewidth. The ESP-1 phase cannot
be identified with a chiral phase with l̂ ⊥ ẑ. Not only is this
phase excluded by symmetry for a uniform uniaxial medium,
if it were present as a second, low-temperature phase it would
exhibit a reduced NMR shift and a broadened NMR line due
to the LIM effect. Additional support for this identification is
provided by recent NMR measurements51 on 3He infused into
the same “stretched aerogel” as in Ref. 19, but with the static
NMR field along the strain axis and the rf field perpendicular
to the strain axis. In this orientation, the NMR shift that onsets
at the same Tc1 as in Ref. 19 is negative as is expected for an
ESP-1 phase with l̂ ‖ ±ẑ. In contrast, a chiral phase with l̂ ⊥ ẑ
should exhibit a positive shift for both field configurations.
Furthermore, the results of Li et al. exclude the normal to 1D
polar phase scenario since the polar phase, were it the present,
would show a large positive shift onsetting at a temperature
above Tc1 as measured by Pollanen et al. No such transition

is observed. Thus, the analysis presented here combined with
the experiments of Refs. 19 and 51 show that the ESP-1 phase
is a chiral ABM state with l̂ ± ẑ.

The biaxial phase spontaneously breaks the rotational sym-
metry about the global anisotropy axis, and is identified with
the ESP-2 phase of 3He in stretched aerogel. This identification
depends upon the interplay between the continuous degener-
acy of the biaxial phase, associated with broken U (1)Lz−N

rotational symmetry, and random anisotropy associated with
the structure of the aerogel. Comparison of the NMR spectrum
for the ESP-2 phase with theoretical predictions for the NMR
frequency shifts provides strong evidence for identifying the
ESP-2 as the biaxial state, partially disordered by random
anisotropy. The analysis is based on an expansion of Volovik’s
original random field model for 3He-aerogel. I argue that the
random anisotropy field results from mesoscopic structures in
silica aerogels, coarse grained on the atomic scale, and formu-
lated in terms of local anisotropy in the scattering of quasipar-
ticles in an aerogel with orientational correlations. Long-range
order of locally anisotropic scattering centers is responsible for
the splitting of the transition for 1D and 2D orbital states.

Further tests of this theoretical description of anisotropic
pair breaking, random anisotropy, and the stability of unique
orbital phases of superfluid 3He are possible with transport
experiments on the same, or similarly prepared, anisotropic
aerogels.
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