Condensed Matter Physics Seminar, UCSD, June 2, 2021

The Left Hand of the Electron in Chiral Superconductors

J. A. Sauls

Department of Physics & Astronomy Center for Applied Physics & Superconducting Technologies Northwestern University & Fermi National Accelerator Laboratory

• Oleksii Shevtsov (Boeing) • Wave Ngampruetikorn (ITS, CUNY)

Left-Handed Electrons in a Chiral Vacuum

P and T violation

►NSF Grant DMR-1508730

- Anomalous Hall Effect in ³He-A
- Anomalous Thermal Hall Effect in Chiral SCs

H. Ikegami, Y. Tsutsumi, K. Kono, Science 341, 59 (2013)
 O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)
 V. Ngampruetikorn and JAS, PRL 124, 157002 (2020)

The Left Hand of the Electron, Issac Asimov, circa 1971

An Essay on the Discovery of Parity Violation by the Weak Interaction

▶... And Reflections on Mirror Symmetry in Nature

Parity Violation in Beta Decay of ⁶⁰Co - Physical Review 105, 1413 (1957)

Experimental Test of Parity Conservation in Beta Decay*

C. S. WU, Columbia University, New York, New York

AND

E. AMBLER, R. W. HAYWARD, D. D. HOPPES, AND R. P. HUDSON, National Bureau of Standards, Washington, D. C. (Received January 15, 1957)

▶ T. D. Lee and C. N. Yang, Phys Rev 104, 204 (1956) ${}^{60}Co \rightarrow {}^{60}Ni + e^- + \bar{\nu}$

correlated with the Spin of the ⁶⁰Co nucleus. $\langle \vec{S} \cdot \vec{p} \rangle \neq 0 \rightsquigarrow$ Parity violation

Chiral Quantum Matter

Handedness: Broken Mirror Symmetry

Realized in Superfluid ³He-A & possibly the ground states in unconventional superconductors

Signatures: Chiral, Edge Fermions ~> Anomalous Hall Transport

Chiral Superconductors

Ground states exhibiting:

- ▶ Emergent Topology of a Broken-Symmetry Ground State of Cooper Pairs
- ▶ Weyl-Majorana excitations of the Ground State
- Ground-State Edge Currents and Angular Momemtum
- ► Broken P and T ~→ Anomalous Hall-Type Transport

Where are They?

- ▶ ³He-A: definitive chiral p-wave condensate; quantitative theory-experimental confirmation
- ▶ UPt₃: electronic analog to ³He: Multiple Superconducting Phases; evidence of chirality
- ▶ Sr_2RuO_4 : proposed as the electronic analog of ³He-A; evidence of chirality, but ... d-wave?
- ▶ Other candidates: URu₂Si₂; SrPtAs, doped graphene ...

The ³He Paradigm: Maximal Symmetry: $G = SO(3)_S \times SO(3)_L \times U(1)_N \times P \times T \rightarrow$ Superfluid Phases of ³He

Realization of Broken Time-Reversal and Mirror Symmetry by the Ground State of ³He Films $SO(3)_S \times SO(3)_L \times U(1)_N \times T \times P$ ► Length Scale for Strong Confinement: $\stackrel{\Downarrow}{\mathbb{S0(2)}_{\mathsf{S}}\times {\mathbb{U}(1)}_{\mathsf{N-L}_z}}\times \ \mathbf{Z_2}$ $\xi_0 = \hbar v_f / 2\pi k_B T_c \approx 20 - 80 \, \text{nm}$ L. Levitov et al., Science 340, 6134 (2013) A. Vorontsov & J. A. Sauls, PRL 98, 045301 (2007) Chiral ABM State $\vec{l} = \hat{z}$ T/T_c 0.8 B 0.6 T_{AB} 0.4 0.2 Stripe Phase 20 10 D/ξ_0 $$\begin{split} \Psi_{\uparrow\downarrow} \\ \Psi_{\downarrow\downarrow} \end{pmatrix}_{ABM} = \begin{pmatrix} p_x + ip_y \sim \mathbf{e}^{+i\phi} & 0 \\ 0 & p_x + ip_y \sim \mathbf{e}^{+i\phi} \end{pmatrix} \end{split}$$

Realization of Broken Time-Reversal and Mirror Symmetry by the Ground State of ³He Films

- ► Length Scale for Strong Confinement:
 - $\xi_0 = \hbar v_f/2\pi k_B T_c \approx 20 80 \,\mathrm{nm}$
 - L. Levitov et al., Science 340, 6134 (2013)
- A. Vorontsov & J. A. Sauls, PRL 98, 045301 (2007)

 $\begin{array}{c} \text{SO(3)}_{\text{S}} \times \text{SO(3)}_{\text{L}} \times \text{U(1)}_{\text{N}} \times \begin{array}{c} \text{T} \\ & \text{P} \\ & \\ & \downarrow \\ & \\ \text{SO(2)}_{\text{S}} \times \text{U(1)}_{\text{N-L}_z} \times \begin{array}{c} \text{Z}_2 \end{array} \end{array}$

Ground-State Angular Momentum

$$\langle \widehat{L}_z
angle = rac{N}{2}\hbar$$
 ?
Open Question

J. A. Sauls, Phys. Rev. B 84, 214509 (2011)

Signatures of Broken T and P Symmetry in ³He-A

Evidence for the Chirality of Superfluid ³He-A

 \downarrow

Broken T and P ~ Anomalous Hall Effect for Electrons in ³He-A

Broken Symmetries → Topology of ³He-A Chirality + Topology → Chiral Edge States

Real-Space vs. Momentum-Space Topology

Phase Winding

$$N_C = \frac{1}{2\pi} \oint_C d\vec{l} \cdot \frac{1}{|\Psi|} \mathsf{Im}[\nabla \Psi] \in \{0, \pm 1, \pm 2, \ldots\}$$

► Massless Fermions confined in the Vortex Core

Chiral Symmetry \rightsquigarrow Topology in Momentum Space $\Psi(\mathbf{p}) = \Delta(p_x \pm ip_y) \sim e^{\pm i\varphi_{\mathbf{p}}}$

Topological Quantum Number: $L_z = \pm 1$

$$N_{\rm 2D} = \frac{1}{2\pi} \oint d\mathbf{p} \cdot \frac{1}{|\Psi(\mathbf{p})|} \operatorname{Im}[\boldsymbol{\nabla}_{\mathbf{p}} \Psi(\mathbf{p})] = L_z$$

Massless Chiral Fermions
 Nodal Fermions in 3D
 Edge Fermions in 2D

Chiral Edge Current Circulating a Hole or Defect in a Chiral Superfluid

$$R \gg \xi_0 \approx 100 \text{ nm}$$

$$Sheet Current:$$

$$J \equiv \int dx J_{\varphi}(x)$$

- Quantized Sheet Current: $rac{1}{4} n \hbar$ ($n = N/V = {}^3 ext{He}$ density)
- Edge Current *Counter*-Circulates: $J = -\frac{1}{4}n\hbar$ w.r.t. Chirality: $\hat{\mathbf{l}} = +\mathbf{z}$

Angular Momentum: $L_z = 2\pi h R^2 \times (-\frac{1}{4} n \hbar) = -(N_{\text{hole}}/2) \hbar$

 $N_{\text{hole}}/2 = \text{Number of }^{3}\text{He Cooper Pairs excluded from the Hole}$

... An object in ³He-A *inherits* angular momentum from the Condensate of Chiral Pairs!

J. A. Sauls, Phys. Rev. B 84, 214509 (2011)

Electron bubbles in the Normal Fermi liquid phase of ³He

- Bubble with $R \simeq 1.5$ nm, $0.1 \text{ nm} \simeq \lambda_f \ll R \ll \xi_0 \simeq 80 \text{ nm}$
- ▶ Effective mass M ≃ 100m₃ (m₃ − atomic mass of ³He)

- ▶ QPs mean free path $l \gg R$
- Mobility of ³He is *independent of* T for $T_c < T < 50 \text{ mK}$

B. Josephson and J. Leckner, PRL 23, 111 (1969)

Electron bubbles in chiral superfluid ³He-A

 $\Delta(\hat{k}) = \Delta(\hat{k}_x + i\hat{k}_y) = \Delta e^{i\phi_{\mathbf{k}}}$

Current: v = $\mu_{\perp} \mathcal{E}$ + $\mu_{AH} \mathcal{E} \times \hat{1}$ R. Salmelin, M. Salomaa & V. Mineev, PRL 63, 868 (1989)
Hall ratio: tan $\alpha = v_{AH}/v_{\mathcal{E}} = |\mu_{AH}/\mu_{\perp}|$

H. Ikegami, Y. Tsutsumi, K. Kono, Science 341, 59-62 (2013)

Transverse e⁻ **bubble current in** ³**He-A** $\Delta I = I_R - I_L$

Structure of Electrons in Superfluid ³He-A

► Forces of Moving Electrons in Superfluid ³He-A

 \Downarrow

► Scattering Theory of ³He Quasiparticles by Electron Bubbles

Forces on the Electron bubble in ³He-A:

$$M \frac{d\mathbf{v}}{dt} = e\boldsymbol{\mathcal{E}} + \mathbf{F}_{\text{QP}}, \quad \mathbf{F}_{QP} - \text{force from quasiparticle collisions}$$

$$\mathbf{F}_{QP} = -\stackrel{\leftrightarrow}{\eta} \cdot \mathbf{v}, \quad \stackrel{\leftrightarrow}{\eta} - \text{generalized Stokes tensor}$$

$$\stackrel{\leftrightarrow}{\eta} = \begin{pmatrix} \eta_{\perp} & \eta_{\text{AH}} & 0\\ -\eta_{\text{AH}} & \eta_{\perp} & 0\\ 0 & 0 & \eta_{\parallel} \end{pmatrix} \quad \text{for broken PT symmetry with } \hat{\mathbf{l}} \parallel \mathbf{e}_{z}$$

$$\qquad \qquad \mathbf{M} \frac{d\mathbf{v}}{dt} = e\mathbf{\mathcal{E}} - \eta_{\perp}\mathbf{v} + \frac{e}{c}\mathbf{v} \times \mathbf{B}_{\text{eff}}, \quad \text{for } \mathbf{\mathcal{E}} \perp \hat{\mathbf{l}}$$

$$\bullet \quad \mathbf{B}_{\text{eff}} = -\frac{c}{e} \eta_{\text{AH}} \hat{\mathbf{l}} \quad B_{\text{eff}} \simeq 10^3 - 10^4 \text{ T} \quad !!!$$

• Mobility:
$$\frac{d\mathbf{v}}{dt} = 0 \quad \rightsquigarrow \quad \mathbf{v} = \stackrel{\leftrightarrow}{\mu} \mathcal{E}$$
, where $\stackrel{\leftrightarrow}{\mu} = e \stackrel{\leftrightarrow}{\eta}^{-1}$

►O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

T-matrix description of Quasiparticle-Ion scattering

▶ Lippmann-Schwinger equation for the *T*-matrix ($\varepsilon = E + i\eta$; $\eta \rightarrow 0^+$):

$$\hat{T}_{S}^{R}(\mathbf{k}',\mathbf{k},E) = \hat{T}_{N}^{R}(\mathbf{k}',\mathbf{k}) + \int \frac{d^{3}k''}{(2\pi)^{3}} \hat{T}_{N}^{R}(\mathbf{k}',\mathbf{k}'') \Big[\hat{G}_{S}^{R}(\mathbf{k}'',E) - \hat{G}_{N}^{R}(\mathbf{k}'',E) \Big] \hat{T}_{S}^{R}(\mathbf{k}'',\mathbf{k},E)$$

$$\hat{G}_{S}^{R}(\mathbf{k}, E) = \frac{1}{\varepsilon^{2} - E_{\mathbf{k}}^{2}} \begin{pmatrix} \varepsilon + \xi_{k} & -\Delta(\hat{\mathbf{k}}) \\ -\Delta^{\dagger}(\hat{\mathbf{k}}) & \varepsilon - \xi_{k} \end{pmatrix}, \quad E_{\mathbf{k}} = \sqrt{\xi_{k}^{2} + |\Delta(\hat{\mathbf{k}})|^{2}}, \quad \xi_{k} = \frac{\hbar^{2}k^{2}}{2m^{*}} - \mu$$

► Normal-state *T*-matrix:

$$\hat{T}_N^R(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = \begin{pmatrix} t_N^R(\hat{\mathbf{k}}',\hat{\mathbf{k}}) & 0\\ 0 & -[t_N^R(-\hat{\mathbf{k}}',-\hat{\mathbf{k}})]^\dagger \end{pmatrix}$$
 in p-h (Nambu) space, where

$$t_N^R(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = -\frac{1}{\pi N_f} \sum_{l=0}^{\infty} (2l+1)e^{i\delta_l} \sin \delta_l P_l(\hat{\mathbf{k}}' \cdot \hat{\mathbf{k}}), \quad P_l(x) - \text{Legendre function}$$

Hard-sphere potential $\rightsquigarrow \tan \delta_l = j_l(k_f R)/n_l(k_f R)$ – spherical Bessel functions

▶ $k_f R$ – determined by the Normal-State Mobility $\rightarrow k_f R = 11.17 \ (R = 1.42 \text{ nm})$

Current bound to an electron bubble ($k_f R = 11.17$)

 $imes 10^{-2}$ 3.77

-1.89

L0.00

Determination of the Stokes Tensor from the QP-lon T-matrix (i) Fermi's golden rule and the QP scattering rate:

$$\Gamma(\mathbf{k}',\mathbf{k}) = \frac{2\pi}{\hbar} W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) \delta(E_{\mathbf{k}'} - E_{\mathbf{k}}), \quad W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = \frac{1}{2} \sum_{\tau'\sigma';\tau\sigma} |\overbrace{\langle \mathbf{k}',\sigma',\tau'}^{\text{outgoing}} \hat{T}_S |\overbrace{\mathbf{k},\sigma,\tau}^{\text{incoming}}|^2$$

(ii) Drag force from QP-ion collisions (linear in v): ►Baym et al. PRL 22, 20 (1969)

$$\mathbf{F}_{\mathsf{QP}} = -\sum_{\mathbf{k},\mathbf{k}'} \hbar(\mathbf{k}' - \mathbf{k}) \left[\hbar \mathbf{k}' \mathbf{v} f_{\mathbf{k}} \left(-\frac{\partial f_{\mathbf{k}'}}{\partial E} \right) - \hbar \mathbf{k} \mathbf{v} (1 - f_{\mathbf{k}'}) \left(-\frac{\partial f_{\mathbf{k}}}{\partial E} \right) \right] \Gamma(\mathbf{k}', \mathbf{k})$$

(iii) Microscopic reversibility condition: $W(\hat{\mathbf{k}}', \hat{\mathbf{k}}: +\mathbf{l}) = W(\hat{\mathbf{k}}, \hat{\mathbf{k}}': -\mathbf{l})$

Broken T and mirror symmetries in ³He-A \Rightarrow fixed $\hat{\mathbf{l}} \rightsquigarrow W(\hat{\mathbf{k}}', \hat{\mathbf{k}}) \neq W(\hat{\mathbf{k}}, \hat{\mathbf{k}}')$ (iv) Generalized Stokes tensor:

$$\mathbf{F}_{\mathsf{QP}} = - \stackrel{\leftrightarrow}{\eta} \cdot \mathbf{v} \quad \rightsquigarrow \quad \eta_{ij} = n_3 p_f \int_0^\infty dE \left(-2 \frac{\partial f}{\partial E} \right) \sigma_{ij}(E) \quad , \quad \stackrel{\leftrightarrow}{\eta} = \begin{pmatrix} \eta_\perp & \eta_{\mathsf{AH}} & 0\\ -\eta_{\mathsf{AH}} & \eta_\perp & 0\\ 0 & 0 & \eta_\parallel \end{pmatrix}$$

 $n_3 = \frac{k_f^3}{3\pi^2} - {}^3$ He particle density, $\sigma_{ij}(E)$ – transport scattering cross section, $f(E) = [\exp(E/k_BT) + 1]^{-1}$ – Fermi Distribution Mirror-symmetric scattering \Rightarrow longitudinal drag force

$$\mathbf{F}_{\mathsf{QP}} = -\stackrel{\leftrightarrow}{\eta} \cdot \mathbf{v}, \quad \eta_{ij} = n_3 p_f \int_0^\infty dE \left(-2\frac{\partial f}{\partial E}\right) \sigma_{ij}(E)$$

Subdivide by mirror symmetry: $W(\hat{\mathbf{k}'}, \hat{\mathbf{k}}) = W^{(+)}(\hat{\mathbf{k}'}, \hat{\mathbf{k}}) + W^{(-)}(\hat{\mathbf{k}'}, \hat{\mathbf{k}}),$ $\sigma_{ij}(E) = \frac{\sigma_{ij}^{(+)}(E)}{\sigma_{ij}^{(-)}(E)} + \sigma_{ij}^{(-)}(E),$ - (1) E) (

$$\tau_{ij}^{(+)}(E) = \frac{3}{4} \int_{E \ge |\Delta(\hat{\mathbf{k}}')|} d\Omega_{\mathbf{k}'} \int_{E \ge |\Delta(\hat{\mathbf{k}})|} \frac{d\Omega_{\mathbf{k}}}{4\pi} \left[(\hat{\mathbf{k}}'_i - \hat{\mathbf{k}}_i) (\hat{\mathbf{k}}'_j - \hat{\mathbf{k}}_j) \right] \frac{d\sigma^{(+)}}{d\Omega_{\mathbf{k}'}} (\hat{\mathbf{k}}', \hat{\mathbf{k}}; \hat{\mathbf{k}})$$

Mirror-symmetric cross section: $W^{(+)}(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = [W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) + W(\hat{\mathbf{k}},\hat{\mathbf{k}}')]/2$

$$\frac{d\sigma^{(+)}}{d\Omega_{\mathbf{k}'}}(\hat{\mathbf{k}}',\hat{\mathbf{k}};E) = \left(\frac{m^*}{2\pi\hbar^2}\right)^2 \frac{E}{\sqrt{E^2 - |\Delta(\hat{\mathbf{k}}')|^2}} W^{(+)}(\hat{\mathbf{k}}',\hat{\mathbf{k}}) \frac{E}{\sqrt{E^2 - |\Delta(\hat{\mathbf{k}})|^2}}$$

 \rightsquigarrow Stokes Drag $\eta_{xx}^{(+)} = \eta_{uu}^{(+)} \equiv \eta_{\perp}, \ \eta_{zz}^{(+)} \equiv \eta_{\parallel}$, No transverse force

$$\left[\eta_{ij}^{(+)}\right]_{i\neq j} = 0$$

Mirror-antisymmetric scattering \Rightarrow transverse force

$$\mathbf{F}_{\mathsf{QP}} = -\stackrel{\leftrightarrow}{\eta} \cdot \mathbf{v}, \quad \eta_{ij} = n_3 p_f \int_0^\infty dE \left(-2\frac{\partial f}{\partial E}\right) \sigma_{ij}(E)$$

Subdivide by mirror symmetry:

$$W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = W^{(+)}(\hat{\mathbf{k}}',\hat{\mathbf{k}}) + W^{(-)}(\hat{\mathbf{k}}',\hat{\mathbf{k}})$$

$$\sigma_{ij}(E) = \sigma_{ij}^{(+)}(E) + \sigma_{ij}^{(-)}(E)$$

$$\sigma_{ij}^{(-)}(E) = \frac{3}{4} \int_{E \ge |\Delta(\hat{\mathbf{k}}')|} d\Omega_{\mathbf{k}'} \int_{E \ge |\Delta(\hat{\mathbf{k}})|} \frac{d\Omega_{\mathbf{k}}}{4\pi} \left[\epsilon_{ijk} (\hat{\mathbf{k}}' \times \hat{\mathbf{k}})_k \right] \frac{d\sigma^{(-)}}{d\Omega_{\mathbf{k}'}} (\hat{\mathbf{k}}', \hat{\mathbf{k}}; E) \left[f(E) - \frac{1}{2} \right]$$

Mirror-antisymmetric cross section: $W^{(-)}(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = [W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) - W(\hat{\mathbf{k}},\hat{\mathbf{k}}')]/2$

$$\frac{d\sigma^{(-)}}{d\Omega_{\mathbf{k}'}}(\hat{\mathbf{k}}',\hat{\mathbf{k}};E) = \left(\frac{m^*}{2\pi\hbar^2}\right)^2 \frac{E}{\sqrt{E^2 - |\Delta(\hat{\mathbf{k}}')|^2}} W^{(-)}(\hat{\mathbf{k}}',\hat{\mathbf{k}}) \frac{E}{\sqrt{E^2 - |\Delta(\hat{\mathbf{k}})|^2}}$$

Transverse force $\eta_{xy}^{(-)} = -\eta_{yx}^{(-)} \equiv \eta_{AH} \Rightarrow$ anomalous Hall effect

►O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

Differential cross section for Bogoliubov QP-Ion Scattering $k_f R = 11.17$

▶ O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

Theoretical Results for the Drag and Transverse Forces

7 Branch Conversion Scattering in a Chiral Condensate

▶ O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

Comparison between Theory and Experiment for the Drag and Transverse Forces

▶ O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

▶ O. Shevtsov and JAS, JLTP 187, 340-353 (2017)

Summary

- \blacktriangleright Electrons in ³He-A are "dressed" by a spectrum of Chiral Fermions
- \blacktriangleright Electrons are "Left handed" in a Right-handed Chiral Vacuum $\rightsquigarrow L_z\approx -100\,\hbar$
- Experiment: RIKEN mobility experiments ~>> Observation an AHE in ³He-A
 Origin: Broken Mirror & Time-Reversal Symmetry
- Theory: Scattering of Bogoliubov QPs by the dressed lon \rightsquigarrow
 - Drag Force $(-\eta_{\perp}\mathbf{v})$ Transverse Force $(\frac{e}{c}\mathbf{v}\times\mathbf{B}_{eff})$

Anomalous Hall Field:
$$\mathbf{B}_{\text{eff}} \approx \frac{\Phi_0}{3\pi^2} k_f^2 (k_f R)^2 \left(\frac{\eta_{\text{AH}}}{\eta_{\text{N}}}\right) \mathbf{l} \simeq 10^3 - 10^4 \,\text{T}\,\mathbf{l}$$

N.B. This theory fails as $T \rightarrow 0$... but also suggests

Bulk Signature of BTRS in UPt₃,Sr₂RuO₄ \rightarrow Thermal Hall Effects? Anomalous Thermal Hall Transport in ³He-A & Chiral Superconductors

Radiation Damping - Pair-Breaking at $T \rightarrow 0$

Is their a transverse component of the radiation backaction?

Fluctuations of the Chiral Vacuum

▶ Mesoscopic Ion coupled and driven through a Chiral "Bath"

Chiral superconductors

 \star Majorana edge states, edge currents, exotic vortices etc.

 \star Where are they?

- $\sqrt{\sqrt{3}}$ Be-A Definitively a chiral p-wave superfluid → quantitative theory of the bulk signature of broken P & T
- \checkmark **UPt**₃ Strong evidence of chirality (Polar Kerr effect) and recent SANS field hysteresis (Avers et al. Nat. Phys 2020)
 - What is the precise the nature of the chiral order parameter?
- **Sr₂RuO₄ & UTe₂** Evidence from Polar Kerr √??

Zero-Field Thermal Hall Effect for studying Chiral SC

- Hall effect requires 1. Broken time-reversal symmetry (TRS) 2. Broken mirror symmetry
- Hall experiments could ... ★ Verify Chiral pairing **★ Identify Order parameter** (winding number & gap structure)

3D

(UPt₃)

Anomalous Thermal Hall effects from edge and bulk

Edge Hall Effect

For Chiral p-wave ground states

[Read & Green, PRB (2000)]

Sensitive
* Edge Mode Spectrum is to surface disorder

★ Both indicate Broken Time-reversal & Mirror Symmetries **★**

Bulk Hall Effect

★ Induced by *impurity scattering* in the bulk

★ Often dominant when present

This work

What happens when a q-particle 'wind' blows past fixed impurities?

thermal bias

Generally scattering lowers transport conductivity

thermal bias
The reverse of e⁻ bubble ³He-A

Anomalous Thermal Hall Effect!

- Standard model for impurity effects Point-like impurities — scattering in the *s*-wave channel only — Hall Effect ONLY in Chiral p-wave states
- \star Point-like means $k_f R \ll 1$

ATHE in Chiral SCs depends on Finite-size Impurities *

Impurities in Chiral SCs

It's never true!

Point-like impurity — Hall effect in p+ip only Chiral d-wave (2D) Chiral p-wave (2D) Thermal 0.03hard-disc radius $k_f R$ Hall 0.2conductivity 0.02suppressed $\kappa_{xy}(T)$ Hall effect in d-wave states 0.01 $\kappa_{xx}(T_c)$ 0.000.6 $1 \ 0$ $0.2 \ 0.4 \ 0.6$ 0.82 0.8

★ T-dependence - Branch conversion (Andreev) Scattering

★ Hall current is sensitive to chiral winding number ✓ Good probe for chirality

Impurity density chosen so that normal-state conductivity is fixed

Impurity-Induced Thermal Hall transport at zero T (N(0) finite) Bulk ATHE effect dominates Edge ATHE

★ Bulk effect dominates ★

Conclusions

 \star Point-like impurity model [$k_f R \ll 1$] spuriously rules out Hall Effect in all but chiral *p*-wave states — **Finite-size impurity needed**

★ Bulk Hall Effect is often dominant but requires low-energy states

- \star If no low-energy states exist Edge Effect dominates even in dirty samples
- We have full set of results for 3D gaps proposed for UPt₃

Thank you!

NSF DMR-1508730

★ Thermal Hall Effect can be used for verifying and studying Chiral SC

Center for Applied Physics and Superconducting Technologies

Thank You!

The End

Determination of the Electron Bubble Radius

(i) Energy required to create a bubble:

$$E(R,P) = E_0(U_0,R) + 4\pi R^2 \gamma + rac{4\pi}{3} R^3 P$$
, P – pressure

(ii) For
$$U_0 o \infty$$
: $E_0 = -U_0 + \pi^2 \hbar^2/2m_e R^2$ – ground state energy

(iii) Surface Energy: hydrostatic surface tension $\rightsquigarrow \gamma = 0.15\,{\rm erg/cm^2}$

(iv) Minimizing E w.r.t.
$$R \rightsquigarrow P = \pi \hbar^2/4m_e R^5 - 2\gamma/R$$

(v) For zero pressure,
$$P = 0$$
:
 $R = \left(\frac{\pi\hbar^2}{8m_e\gamma}\right)^{1/4} \approx 2.38 \,\mathrm{nm} \quad \rightsquigarrow \quad k_f R = 18.67$
Transport $\rightsquigarrow k_f R = 11.17$
A. Ahonen et al., J. Low Temp. Phys., 30(1):205–228, 1978

Domains of ³He-A - Earthquakes and Stability

Domains of ³He-A - Earthquakes and Stability

Domains of ³He-A - Earthquakes and Stability

Single Chiral Domain

Two Fluid Motion for a moving electron bubble as $T \rightarrow 0$

An ion moving through a fluid experiences a force originating from the scattering of excitations off the ion.
 ³He-A at T ≠ 0 ³He-A: a condensate of chiral Cooper pairs & a fluid of "normal" chiral Fermions.

$$M \frac{d\mathbf{V}}{dt} = e\mathbf{E} + e\mathbf{V} \times \mathbf{B}_W - \boldsymbol{\eta} \mathbf{V}$$

- Dynamical Effective Mass of the Ion: $M \leftarrow$ Backflow & Virtual Excitations
- Stokes Drag Force on the Ion: $\mathbf{F}_{\mathsf{drag}} = -\eta \mathbf{V} \leftarrow \mathsf{Dynamic Viscosity}$
- Chiral Effective Magnetic Field: $\mathbf{B}_W = -\frac{c}{e}\eta_{xy}\hat{\mathbf{l}}$ \leftarrow Anomalous Hall Response

Stokes' drag for a sphere of radius R: $\eta = 6\pi \nu R \rightsquigarrow$ Reynold's Number: $Re \equiv \frac{2\rho V R}{m}$

► Normal ³He:
$$\rho = 0.0819 \,\text{g/cm}^3$$
 $\mu_{\text{N}} = \frac{e}{n_3 p_f \sigma_{\text{N}}^{\text{tr}}} \simeq 1.7 \times 10^{-6} \,\text{m}^2/\text{V-s} \quad \rightsquigarrow R = 1.42 \,\text{nm}$ $k_f R = 11.17 \,\text{m}$

 $\mathsf{R}e = \mathsf{R}e_{\mathsf{N}} \left(\frac{\eta_{\mathsf{N}}}{n}\right)^{3/2} \xrightarrow[T \to 0]{} \sim \left(\frac{T_c}{T}\right)^{9/2} !$

► Derived Parameters:
$$\nu_{\rm N} = \frac{\eta_{\rm N}}{6\pi R} = 3.5 \times 10^{-6} \text{ Pa-s}$$
 $\text{R}e_{\rm N} = 6.7 \times 10^{-6}$ $\text{B}_{\rm N} \equiv \frac{c}{e} \eta_{\rm N} = 5.9 \times 10^5 \text{ T}$

• Reynold's Number for flow past an electron bubble in ³He-A:

Vanishing of the Effective Magnetic Field for $T \rightarrow 0$

Breakdown of Laminar Flow

Breakdown of Scattering Theory for $T \rightarrow 0$

Momentum-Space Topology of Nambu-Bogoliubov Hamiltonian

Hamiltonian for 2D Chiral Superfluid (³He-A Thin Film & Sr_2RuO_4):

$$\widehat{H} = \begin{pmatrix} (|\mathbf{p}|^2/2m^* - \mu) & \mathbf{c}(p_x + ip_y) \\ \mathbf{c}(p_x - ip_y) & -(|\mathbf{p}|^2/2m^* - \mu) \end{pmatrix} = \vec{\mathbf{m}}(\mathbf{p}) \cdot \widehat{\vec{\boldsymbol{\tau}}}$$

 $\vec{\mathbf{m}} = (cp_x, \mp cp_y, \xi(\mathbf{p}))$ with $|\vec{\mathbf{m}}(\mathbf{p})|^2 = (|\mathbf{p}|^2/2m - \mu)^2 + c^2|\mathbf{p}|^2 > 0, \mu \neq 0$

▶ Topological Invariant for 2D chiral SC \leftrightarrow QED in d = 2+1 [G.E. Volovik, JETP 1988]:

$$N_{\mathsf{C}} = \int \frac{d^2 p}{4\pi} \,\hat{\mathbf{m}}(\mathbf{p}) \cdot \left(\frac{\partial \hat{\mathbf{m}}}{\partial p_x} \times \frac{\partial \hat{\mathbf{m}}}{\partial p_y}\right) = \begin{cases} \pm 1 \ ; & \mu > 0 \text{ and } \Delta \neq 0 \\ 0 \ ; & \mu < 0 \text{ or } \Delta = 0 \end{cases}$$

"Vacuum" $(\Delta = 0) \& N_{\mathsf{C}} = 0$
Zero Energy Fermions \uparrow Confined on the Edge

Superfluid Phases of ³He in a Magnetic Field for $P < P_{PCP}$

Mobility of an electron bubble in the Normal Fermi Liquid

$$t^{R}_{\mathsf{N}}(\hat{\mathbf{k}}', \hat{\mathbf{k}}; E) = \sum_{l=0}^{\infty} (2l+1)t^{R}_{l}(E)P_{l}(\hat{\mathbf{k}}' \cdot \hat{\mathbf{k}})$$

$$t^{R}_{l}(E) = -\frac{1}{\pi N_{f}}e^{i\delta_{l}(E)}\sin\delta_{l}(E)$$

$$\frac{d\sigma}{d\Omega_{\mathbf{k}'}} = \left(\frac{m^{*}}{2\pi\hbar^{2}}\right)^{2}|t^{R}_{\mathsf{N}}(\hat{\mathbf{k}}', \hat{\mathbf{k}}; E)|^{2}$$

▶ Non-resonant scattering at $T \ll E_f/k_B \approx 3 \,\mathrm{K} \rightsquigarrow \delta_l(E \approx E_f)$

$$\bullet \ \sigma_{\mathsf{N}}^{\mathsf{tr}} = \int \frac{d\Omega_{\mathbf{k}'}}{4\pi} (1 - \hat{\mathbf{k}} \cdot \hat{\mathbf{k}'}) \frac{d\sigma}{d\Omega_{\mathbf{k}'}} = \frac{4\pi}{k_f^2} \sum_{l=0}^{\infty} (l+1) \sin^2(\delta_{l+1} - \delta_l)$$
$$\bullet \ \mu_{\mathsf{N}} = \frac{e}{n_3 p_f \sigma_{\mathsf{N}}^{\mathsf{tr}}}, \quad p_f = \hbar k_f, \quad n_3 = \frac{k_f^3}{3\pi^2}$$

Theoretical Models for the QP-ion potential

$$\bullet \ U(r) = \begin{cases} U_0, & r < R, \\ -U_1, & R < r < R', \\ 0, & r > R'. \end{cases}$$

▶ \rightsquigarrow Hard-Sphere Potential: $U_1 = 0$, R' = R, $U_0 \rightarrow \infty$

►
$$U(x) = U_0 [1 - \tanh[(x - b)/c]], \quad x = k_f r$$

- $U(x) = U_0 / \cosh^2[\alpha x^n]$, $x = k_f r$ (Pöschl-Teller-like potential)
- ▶ Random phase shifts: $\{\delta_l | l = 1 \dots l_{\max}\}$ are generated with δ_0 is an adjustable parameter
- ▶ Parameters for all models are chosen to fit the experimental value of the normal-state mobility, $\mu_N^{\exp} = 1.7 \times 10^{-6} m^2 / V \cdot s$

Theoretical Models for the QP-ion potential

Label	Potential	Parameters
Model A	hard sphere	$k_f R = 11.17$
Model B	repulsive core & attractive well	$U_0 = 100E_f, U_1 = 10E_f, k_f R' = 11, R/R' = 0.36$
Model C	random phase shifts model 1	$l_{\max} = 11$
Model D	random phase shifts model 2	$l_{\max} = 11$
Model E	Pöschl-Teller-like	$U_0 = 1.01E_f, k_f R = 22.15, \alpha = 3 \times 10^{-5}, n = 4$
Model F	Pöschl-Teller-like	$U_0 = 2E_f, k_f R = 19.28, \alpha = 6 \times 10^{-5}, n = 4$
Model G	hyperbolic tangent	$U_0 = 1.01 E_f, k_f R = 14.93, b = 12.47, c = 0.246$
Model H	hyperbolic tangent	$U_0 = 2E_f, k_f R = 14.18, b = 11.92, c = 0.226$
Model I	soft sphere 1	$U_0 = 1.01 E_f, k_f R = 12.48$
Model J	soft sphere 2	$U_0 = 2E_f, k_f R = 11.95$

Comparison with Experiment for Models for the QP-ion potential

Broken Time-Reversal (T) & mirror (Π_m) symmetries in Chiral Superfluids

> Broken TRS: $\mathbf{T} \cdot (\hat{p}_x + i\hat{p}_y) = (\hat{p}_x - i\hat{p}_y)$

• Broken mirror symmetry: $\Pi_{m} \cdot (\hat{p}_x + i\hat{p}_y) = (\hat{p}_x - i\hat{p}_y)$

► Chiral symmetry: $C = T \times \Pi_m$ \rightsquigarrow $C \cdot (\hat{p}_x + i\hat{p}_y) = (\hat{p}_x + i\hat{p}_y)$

• Microscopic reversibility for chiral superfluids: $W(\hat{\mathbf{k}}', \hat{\mathbf{k}}; +\hat{\mathbf{l}}) = W(\hat{\mathbf{k}}, \hat{\mathbf{k}}'; -\hat{\mathbf{l}})$

For BTRS: the chiral axis $\hat{\mathbf{l}}$ is fixed \rightsquigarrow

 $W(\hat{\mathbf{k}}', \hat{\mathbf{k}}; \hat{\mathbf{l}}) \neq W(\hat{\mathbf{k}}, \hat{\mathbf{k}}'; \hat{\mathbf{l}})$

Calculation of LDOS and Current Density

$$\begin{split} \hat{\mathcal{G}}_{S}^{R}(\mathbf{r}',\mathbf{r},E) &= \int \frac{d^{3}k}{(2\pi)^{3}} \int \frac{d^{3}k'}{(2\pi)^{3}} e^{i\mathbf{k}'\mathbf{r}'} e^{-i\mathbf{k}\mathbf{r}} \hat{\mathcal{G}}_{S}^{R}(\mathbf{k}',\mathbf{k},E) \\ \hat{\mathcal{G}}_{S}^{R}(\mathbf{k}',\mathbf{k},E) &= (2\pi)^{3} \hat{\mathcal{G}}_{S}^{R}(\mathbf{k},E) \delta_{\mathbf{k}',\mathbf{k}} + \hat{\mathcal{G}}_{S}^{R}(\mathbf{k}',E) \hat{T}_{S}(\mathbf{k}',\mathbf{k},E) \hat{\mathcal{G}}_{S}^{R}(\mathbf{k},E) \\ \hat{\mathcal{G}}_{S}^{R}(\mathbf{k},E) &= \frac{1}{\varepsilon^{2} - E_{\mathbf{k}}^{2}} \begin{pmatrix} \varepsilon + \xi_{k} & -\Delta(\hat{\mathbf{k}}) \\ -\Delta^{\dagger}(\hat{\mathbf{k}}) & \varepsilon - \xi_{k} \end{pmatrix}, \quad \varepsilon = E + i\eta, \quad \eta \to 0^{+} \\ N(\mathbf{r},E) &= -\frac{1}{2\pi} \mathrm{Im} \left\{ \mathrm{Tr} \left[\hat{\mathcal{G}}_{S}^{R}(\mathbf{r},\mathbf{r},E) \right] \right\} \\ \mathbf{j}(\mathbf{r}) &= \frac{\hbar}{4mi} k_{B} T \sum_{n=-\infty}^{\infty} \lim_{\mathbf{r} \to \mathbf{r}'} \mathrm{Tr} \left[(\nabla_{\mathbf{r}'} - \nabla_{\mathbf{r}}) \hat{\mathcal{G}}^{M}(\mathbf{r}',\mathbf{r},\epsilon_{n}) \right] \\ \hat{\mathcal{G}}_{S}^{R}(\mathbf{r}',\mathbf{r},E) &= \hat{\mathcal{G}}_{S}^{M}(\mathbf{r}',\mathbf{r},\epsilon_{n}) \Big|_{i\epsilon_{n} \to \varepsilon}, \text{ for } n \ge 0 \\ \hat{\mathcal{G}}_{S}^{M}(\mathbf{k},\mathbf{k}',-\epsilon_{n}) &= \left[\hat{\mathcal{G}}_{S}^{M}(\mathbf{k}',\mathbf{k},\epsilon_{n}) \right]^{\dagger} \end{split}$$

Angular momentum of an electron bubble in ³He-A ($k_f R = 11.17$)

Temperature scaling of the Stokes tensor components

For
$$1 - \frac{T}{T_c} \to 0^+$$
:
 $\frac{\eta_{\perp}}{\eta_{\rm N}} - 1 \propto -\Delta(T) \propto \sqrt{1 - \frac{T}{T_c}}$
 $\frac{\eta_{\rm AH}}{\eta_{\rm N}} \propto \Delta^2(T) \propto 1 - \frac{T}{T_c}$

For
$$\frac{T}{T_c} \to 0^+$$
:
 $\frac{\eta_{\perp}}{\eta_{\rm N}} \propto \left(\frac{T}{T_c}\right)^2$
 $\frac{\eta_{\rm AH}}{\eta_{\rm N}} \propto \left(\frac{T}{T_c}\right)^3$

Multiple Andreev Scattering ~>> Formation of Weyl fermions on *e*-bubbles

Obtaining Thermal Hall currents from Quasiclassical Linear Response Theory

Quasiclassical Transport Equations

propagators (encode spectrum)

order parameter

effects of impurities

Solve

Self-consistent **Equilibrium states**

- **Gap Equation**
- **T-matrix Equations**

Hall effect vs imp
There is density th
Zero-T Chiral
Thermal Hall
Conductance 40

$$\frac{K_{xy}^{\text{bulk}}}{\pi^2 k_B^2 T/6\pi\hbar}$$
 20
Conservative
estimate
 $k_f \xi_0 = 100$
 $\xi_0 = \frac{\hbar v_f}{2\pi k_B T_{c0}}$
 $K_{xy}^{\text{bulk}} \propto k_f \xi_0$

dominates even in dirty systems **★** (no bulk signal)

winding) - Bound states with energies depending on winding #

★ Hall currents also depend on winding #

★ Repeated Andreev scattering from order parameter variation (chiral winding) --- Bound states with energies depending on winding #

★ Carried by these states, Hall currents also depend on winding #

States available for transport at low T from broadened sub-gap states

(hard-disc) Finite-size impurity — Longitudinal thermal currents hardly affected by impurity size

★ Characterized by scattering rate \star Insensitive to gap symmetry / impurity size

Impurity density chosen so that normal-state conductivity is fixed

