The Left Hand of the Electron in a Chiral Vacuum

J. A. Sauls
Department of Physics \& Astronomy Hearne Institute of Theoretical Physics
Louisiana State University

- P and T violation ${ }^{3} \mathrm{He}$
- Dynamical Effects of Symmetry Breaking
- Low Temperature Physics at NU

The Left Hand of the Electron, Issac Asimov, November 1971
-An Essay on the Discovery of Parity Violation by the Weak Interaction

-... And Reflections on Mirror Symmetry in Nature

Parity Violation in Beta Decay of ${ }^{60}$ Co - Physical Review 105, 1413 (1957)

 Experimental Test of Parity Conservation in Beta Decay*C. S. Wu, Columbia University, New York, New York

AND
E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, National Bureau of Standards, Washington, D. C.
(Received January 15, 1957)

$>$ T. D. Lee and C. N. Yang, Phys Rev 104, 204 (1956)

$$
{ }^{60} \mathrm{Co} \rightarrow{ }^{60} N i+e^{-}+\bar{\nu}
$$

-Current of Beta electrons is (anti) correlated with the Spin of the ${ }^{60} \mathrm{Co}$ nucleus.
$\langle\vec{S} \cdot \vec{p}\rangle \neq 0 \rightsquigarrow$ Parity violation

Chiral Quantum Matter

Molecular Chiral Enantiomers

Handedness: Broken Mirror Symmetry

Chiral Quantum Matter

Molecular Chiral Enantiomers

Handedness: Broken Mirror Symmetry

Chiral Diatomic Molecules

$$
\Psi(\mathbf{r})=f(r)(x+i y)
$$

Mirror

Broken Mirror Symmetries

$$
\Pi_{z x} \Psi(\mathbf{r})=f(r)(x-i y)
$$

Chiral Quantum Matter

Molecular Chiral Enantiomers

Handedness: Broken Mirror Symmetry

Chiral Diatomic Molecules

$$
\Psi(\mathbf{r})=f(r)(x+i y)
$$

Mirror

Broken Mirror Symmetries

$$
\Pi_{z x} \Psi(\mathbf{r})=f(r)(x-i y)
$$

Broken Time-Reversal Symmetry

$$
\mathrm{T} \Psi(\mathbf{r})=f(r)(x-i y)
$$

Chiral Quantum Matter

Molecular Chiral Enantiomers
Chiral Diatomic Molecules

Handedness: Broken Mirror Symmetry

$$
\Psi(\mathbf{r})=f(r)(x+i y)
$$

Mirror

Broken Mirror Symmetries

$$
\Pi_{z x} \Psi(\mathbf{r})=f(r)(x-i y)
$$

Broken Time-Reversal Symmetry

$$
\mathrm{T} \Psi(\mathbf{r})=f(r)(x-i y)
$$

Signatures: Chiral, Edge Fermions \rightsquigarrow Anomalous Hall Transport

Chiral Quantum Matter

Molecular Chiral Enantiomers

Handedness: Broken Mirror Symmetry

Chiral Diatomic Molecules

$$
\Psi(\mathbf{r})=f(r)(x+i y)
$$

Mirror

Broken Mirror Symmetries

$$
\Pi_{z x} \Psi(\mathbf{r})=f(r)(x-i y)
$$

Broken Time-Reversal Symmetry

$$
\mathrm{T} \Psi(\mathbf{r})=f(r)(x-i y)
$$

Signatures: Chiral, Edge Fermions \rightsquigarrow Anomalous Hall Transport
Realized in Superfluid ${ }^{3} \mathrm{He}-\mathrm{A} \&$ possibly the ground states in unconventional superconductors

Broken Symmetry, Phase Transitions and Long-Range Order

Broken Symmetry, Phase Transitions and Long-Range Order

- The Superfluid Phases of Liquid Helium Exhibit all of these Broken Symmetries!

Nucleus

Helium

 $(1 s)^{2}$ - closed electronic shell- chemically inert
- $\mathrm{S}_{\text {electronic }}=0$

Quantum Statistics Important for $\mathbf{T}<\mathbf{T} * \sim \mathbf{1} \mathbf{K}$

Helium Liquids

- Indistinguishability of identical particles becomes important ...

$$
\lambda=\frac{\hbar}{p} \approx \frac{\hbar}{\sqrt{2 \mathrm{~m} k_{B} T}} \quad>\quad \mathbf{a}=\sqrt[3]{\frac{V}{N}} \approx \AA
$$

$$
T<\mathbf{T}^{*}=\frac{\hbar^{2}}{2 \mathrm{~m} k_{B} \mathbf{a}^{2}} \approx 3 \mathrm{~K}
$$

${ }^{3} \mathrm{He}$
Fermi Liquid
BCS Superfluid
${ }^{4} \mathrm{He}$

$$
\mathrm{T}<\mathrm{T}_{\mathrm{c}}=2 \times 10^{-3} \mathrm{~K}
$$

Bose Liquid
Superfluid
$\mathrm{T}<\mathrm{T}_{\lambda}=2.2 \mathrm{~K}$

Phase Diagram for ${ }^{3} \mathrm{He}$

- Permanent liquid at

$$
\mathrm{P}<34 \mathrm{~atm}
$$

- Smooth crossover near $\mathrm{T}^{*}=\mathrm{E}_{\mathrm{f}} \sim 2 \mathrm{~K}$
- ... superfluidity below
- $\mathrm{T}_{\mathrm{c}} \sim 2 \times 10^{-3} \mathrm{~K}$
D. Osheroff, R. Richardson, D. Lee (1972) A. J. Leggett (1973)

2 Nobel Prizes: 1996 \& 2006

Phase Diagram for ${ }^{3} \mathrm{He}$

- Permanent liquid at

$$
\mathrm{P}<34 \mathrm{~atm}
$$

- Smooth crossover near $\mathrm{T}^{*}=\mathrm{E}_{\mathrm{f}} \sim 2 \mathrm{~K}$
- ... superfluidity below
- $\mathrm{T}_{\mathrm{c}} \sim 2 \times 10^{-3} \mathrm{~K}$
D. Osheroff, R. Richardson, D. Lee (1972) A. J. Leggett (1973)

2 Nobel Prizes: 1996 \& 2006

- Macroscopic occupation of a 2-particle quantum state

$$
\left|\Phi_{N}\right\rangle=\left[\iint d \mathbf{r}_{1} d \mathbf{r}_{2} \varphi_{s_{1} s_{2}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \psi_{s_{1}}^{\dagger}\left(\mathbf{r}_{1}\right) \psi_{s_{2}}^{\dagger}\left(\mathbf{r}_{2}\right)\right]^{N / 2}|\mathrm{vac}\rangle
$$

Phase Diagram for ${ }^{3} \mathrm{He}$

- Permanent liquid at $\mathrm{P}<34 \mathrm{~atm}$
- Smooth crossover near $\mathrm{T}^{*}=\mathrm{E}_{\mathrm{f}} \sim 2 \mathrm{~K}$
- ... superfluidity below
- $\mathrm{T}_{\mathrm{c}} \sim 2 \times 10^{-3} \mathrm{~K}$
D. Osheroff, R. Richardson, D. Lee (1972 A. J. Leggett (1973)

2 Nobel Prizes: $1996 \& 2006$

- Macroscopic occupation of a 2-particle quantum state

$$
\begin{aligned}
& \left|\Phi_{N}\right\rangle=\left[\iint_{\text {"p-wave" } d \mathbf{r}_{1} d \mathbf{r}_{2} \varphi_{s_{1} s_{2}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)} \psi_{s_{1}}^{\dagger}\left(\mathbf{r}_{1}\right) \psi_{s_{2}}^{\dagger}\left(\mathbf{r}_{2}\right)\right]^{N / 2}|\mathrm{vac}\rangle \\
& \mathrm{L}=1 \text { "spin triplet" }
\end{aligned}
$$

Discovery - NMR Shift in Liquid ${ }^{3} \mathrm{He}-\mathrm{A}$

New Magnetic Phenomena in Liquid He^{3} below 3 mK *

D. D. Osheroff, \dagger W. J. Gully, R. C. Richardson, and D. M. Lee Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14850
(Received 7 July 1972)
Magnetic measurements have been made on a sample of He^{3} in a Pomeranchuk cell. Below about 2.7 mK , the NMR line apparently associated with the liquid portion of the sample shifts continuously to higher frequencies during cooling. Below about 2 mK the frequency shift vanishes, and the magnitude of the liquid absorption drops abruptly to approximately $\frac{1}{2}$ its previous value. These measurements are related to the pressure phenomena reported by Osheroff, Richardson, and Lee.

Interpretation of Recent Results on He^{3} below 3 mK : A New Liquid Phase?

A. J. Leggett
School of Mathematical and Physical Sciences, University of Sussex, England (Received 5 September 1972)

It is demonstrated that recent NMR results in ${ }^{3} \mathrm{He}$ indicate that at 2.65 mK , the liquid makes a second-order transition to a phase in which the "spin-orbit" symmetry is spontaneously broken. The hypothesis that this phase is a BCS-type phase in which pairs form with l odd, $S=1, S_{z}= \pm 1$ leads to reasonable agreement with both NMR and thermodynamic data, but involves some difficulties as to stability.

$$
\omega^{2}=(\gamma H)^{2}+\Omega^{2}(T) \quad \longrightarrow \quad \omega \simeq \gamma H+\frac{\Omega^{2}(T)}{2 \gamma H} \propto\left(1-T / T_{c}\right)
$$

$\Omega^{2}=-\frac{2 \gamma^{2}}{\chi}\langle\Psi| \mathcal{H}_{D}|\Psi\rangle \quad \Omega \neq 0 \Longrightarrow$ Broken relative Spin-Orbit Rotation Symmetry

NMR frequency shift and Magnetic Susceptibility

Chiral AM State \vec{l}

$$
\left|\Psi_{A}\right\rangle=\Delta\left\{\begin{array}{cc}
\overbrace{\left(p_{y}+i p_{z}\right)}^{L_{x}=+1} & \overbrace{(|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle)}^{\text {orbital FM }} \begin{array}{c}
\text { spin AFM }
\end{array}
\end{array}\right\}
$$

- N.B. NMR is not a test for broken mirror or time-reversal symmetry

Maximal Symmetry of ${ }^{3} \mathrm{He}: \mathrm{G}=\mathrm{SO}(3)_{\mathrm{S}} \times \mathrm{SO}(3)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{N}} \times \mathrm{P} \times \mathrm{T}$

Maximal Symmetry of ${ }^{3} \mathrm{He}: G=S O(3)_{S} \times \mathrm{SO}(3)_{\llcorner } \times \mathrm{U}(1)_{N} \times P \times T$

BCS Condensate of Bound Spin 1/2 Fermions

Cooper Pairs with Total Spin, $S=1$ and Orbital Angular Momentum, $L=1$

Maximal Symmetry of ${ }^{3} \mathrm{He}: G=S O(3)_{S} \times \mathrm{SO}(3)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{N}} \times \mathrm{P} \times \mathrm{T}$ BCS Condensate of Bound Spin $1 / 2$ Fermions

Cooper Pairs with Total Spin, $S=1$ and Orbital Angular Momentum, $L=1$

"Isotropic" BW State

$$
\left|\Psi_{B}\right\rangle=\Delta\{\overbrace{\frac{1}{\sqrt{2}}\left(p_{x}-i p_{y}\right)}^{L_{z}=-1} \underbrace{|\uparrow \uparrow\rangle}_{S_{z}=+1}+\overbrace{\frac{1}{\sqrt{2}}\left(p_{x}+i p_{y}\right)}^{L_{z}=+1} \underbrace{|\downarrow \downarrow\rangle}_{S_{z}=-1}+\overbrace{p_{z}}^{L_{z}=0} \underbrace{\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle)}_{S_{z}=0}\}
$$

Realization of Broken Time-Reversal and Mirror Symmetry by the Ground State of ${ }^{3} \mathrm{He}$ Films
-Length Scale for Strong Confinement:
$\xi_{0}=\hbar v_{f} / 2 \pi k_{B} T_{c} \approx 20-80 \mathrm{~nm}$
-L. Levitov et al., Science 340, 6134 (2013)
A. Vorontsov \& J. A. Sauls, PRL 98, 045301 (2007)

$$
\left(\begin{array}{ll}
\Psi_{\uparrow \uparrow} & \Psi_{\uparrow \downarrow} \\
\Psi_{\uparrow \downarrow} & \Psi_{\downarrow \downarrow}
\end{array}\right)_{A B M}=\left(\begin{array}{cc}
p_{x}+i p_{y} \sim e^{+i \phi} & 0 \\
0 & p_{x}+i p_{y} \sim e^{+i \phi}
\end{array}\right)
$$

$$
\mathrm{SO}(3)_{\mathrm{S}} \times \mathrm{SO}(3)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{N}} \times \mathrm{T} \times \mathrm{P}
$$

$$
\mathrm{SO}(2)_{\mathrm{S}} \times \mathrm{U}(1)_{\mathrm{N}-\mathrm{L}_{z}} \times \mathrm{Z}_{2}
$$

$$
\text { Chiral ABM State } \vec{l}=\hat{\mathbf{z}}
$$

Realization of Broken Time-Reversal and Mirror Symmetry by the Ground State of ${ }^{3} \mathrm{He}$ Films
-Length Scale for Strong Confinement:
$\xi_{0}=\hbar v_{f} / 2 \pi k_{B} T_{c} \approx 20-80 \mathrm{~nm}$
\rightarrow L. Levitov et al., Science 340, 6134 (2013)
-A. Vorontsov \& J. A. Sauls, PRL 98, 045301 (2007)

$$
\left(\begin{array}{ll}
\Psi_{\uparrow \uparrow} & \Psi_{\uparrow \downarrow} \\
\Psi_{\uparrow \downarrow} & \Psi_{\downarrow \downarrow}
\end{array}\right)_{A B M}=\left(\begin{array}{cc}
p_{x}+i p_{y} \sim e^{+i \phi} & 0 \\
0 & p_{x}+i p_{y} \sim e^{+i \phi}
\end{array}\right)
$$

$\mathrm{SO}(3)_{\mathrm{S}} \times \mathrm{SO}(3)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{N}} \times \mathrm{T} \times \mathrm{P}$

$$
\mathrm{SO}(2)_{\mathrm{S}} \times \mathrm{U}(1)_{\mathrm{N}-\mathrm{L}_{z}} \times \mathrm{Z}_{2}
$$

Chiral ABM State $\vec{l}=\hat{\mathbf{z}}$

Ground-State Angular Momentum

$$
\begin{aligned}
& \left\langle\widehat{L}_{z}\right\rangle=\frac{N}{2} \hbar ? \\
& \text { Open Question }
\end{aligned}
$$

Signatures of Broken T and P Symmetry in ${ }^{3} \mathrm{He}-\mathrm{A}$

Evidence for the Chirality of Superfluid ${ }^{3} \mathrm{He}-\mathrm{A}$
\Downarrow

Broken T and $\mathrm{P} \rightsquigarrow$ Zero-Field Hall Effect for Electrons Moving in ${ }^{3} \mathrm{He}-\mathrm{A}$

Broken Symmetries \rightsquigarrow Topology of ${ }^{3} \mathrm{He}-\mathrm{A}$
Chirality + Topology \rightsquigarrow Chiral Edge States

Topology in Real Space

Phase Winding
$N_{C}=\frac{1}{2 \pi} \oint_{C} d \vec{l} \cdot \frac{1}{|\Psi|} \operatorname{lm}[\nabla \Psi] \in\{0, \pm 1, \pm 2, \ldots\}$

- Massless Fermions confined in the

Vortex Core

Real-Space vs. Momentum-Space Topology

Topology in Real Space
$\Psi(\mathbf{r})=|\Psi(r)| e^{i \vartheta(\mathbf{r})}$

Chiral Symmetry \rightsquigarrow Topology in Momentum Space $\Psi(\mathbf{p})=\Delta\left(p_{x} \pm i p_{y}\right) \sim e^{ \pm i \varphi_{\mathbf{p}}}$

Phase Winding
$N_{C}=\frac{1}{2 \pi} \oint_{C} d \vec{l} \cdot \frac{1}{|\Psi|} \operatorname{lm}[\nabla \Psi] \in\{0, \pm 1, \pm 2, \ldots\}$

- Massless Fermions confined in the Vortex Core

Topological Quantum Number: $L_{z}= \pm 1$

$$
\begin{aligned}
N_{2 \mathrm{D}}=\frac{1}{2 \pi} & \oint \mathbf{p} \cdot \frac{1}{|\Psi(\mathbf{p})|} \operatorname{lm}\left[\nabla_{\mathbf{p}} \Psi(\mathbf{p})\right]=L_{z} \\
& \text { Massless Chiral Fermions } \\
& \bullet \text { Nodal Fermions in 3D } \\
& >\text { Edge Fermions in 2D }
\end{aligned}
$$

Chiral Edge Current Circulating a Hole or Defect in a Chiral Superfluid

- $R \gg \xi_{0} \approx 100 \mathrm{~nm}$
- Sheet Current :

$$
J \equiv \int d x J_{\varphi}(x)
$$

Chiral Edge Current Circulating a Hole or Defect in a Chiral Superfluid

- $R \gg \xi_{0} \approx 100 \mathrm{~nm}$
- Sheet Current :

$$
J \equiv \int d x J_{\varphi}(x)
$$

- Quantized Sheet Current: $\frac{1}{4} n \hbar \quad\left(n=N / V={ }^{3} \mathrm{He}\right.$ density $)$
- Edge Current Counter-Circulates: $J=-\frac{1}{4} n \hbar \quad$ w.r.t. Chirality: $\hat{\mathrm{l}}=+\mathbf{z}$

Chiral Edge Current Circulating a Hole or Defect in a Chiral Superfluid

- $R \gg \xi_{0} \approx 100 \mathrm{~nm}$
- Sheet Current:

$$
J \equiv \int d x J_{\varphi}(x)
$$

- Quantized Sheet Current: $\frac{1}{4} n \hbar \quad\left(n=N / V={ }^{3} \mathrm{He}\right.$ density $)$
- Edge Current Counter-Circulates: $J=-\frac{1}{4} n \hbar \quad$ w.r.t. Chirality: $\hat{\mathrm{l}}=+\mathbf{z}$
- Angular Momentum: $L_{z}=2 \pi h R^{2} \times\left(-\frac{1}{4} n \hbar\right)=-\left(N_{\text {hole }} / 2\right) \hbar$

$$
N_{\text {hole }} / 2=\text { Number of }{ }^{3} \mathrm{He} \text { Cooper Pairs excluded from the Hole }
$$

An object in ${ }^{3} \mathrm{He}-\mathrm{A}$ inherits angular momentum from the Condensate of Chiral Pairs!

Electron bubbles in the Normal Fermi liquid phase of ${ }^{3} \mathrm{He}$

- Bubble with $R \simeq 1.5 \mathrm{~nm}$, $0.1 \mathrm{~nm} \simeq \lambda_{f} \ll R \ll \xi_{0} \simeq 80 \mathrm{~nm}$
- Effective mass $M \simeq 100 m_{3}$ (m_{3} - atomic mass of ${ }^{3} \mathrm{He}$)
- QPs mean free path $l \gg R$
- Mobility of ${ }^{3} \mathrm{He}$ is independent of T for $T_{c}<T<50 \mathrm{mK}$
B. Josephson and J. Leckner, PRL 23, 111 (1969)

Electron bubbles in chiral superfluid ${ }^{3} \mathrm{He}-\mathrm{A}$

- Current: $\mathbf{v}=\overbrace{\mu_{\perp} \mathcal{E}}^{\mathrm{V} \mathcal{E}}+\overbrace{\mu_{\text {AH }} \mathcal{E} \times \hat{\mathrm{l}}}^{\mathbf{v}_{\mathrm{AH}}}$ R. Salmelin, M. Salomaa \& V. Mineev, PRL 63, 868 (1989)
- Hall ratio: - $\tan \alpha=v_{\text {AH }} / v_{\mathcal{E}}=\left|\mu_{\text {AH }} / \mu_{\perp}\right|$

Measurement of the Transverse e^{-}mobility in Superfluid ${ }^{\mathbf{3}} \mathrm{He}$ Films

Measurement of the Transverse e^{-}mobility in Superfluid ${ }^{3} \mathrm{He}$ Films

Transverse Force from Skew Scattering

$$
\leadsto \Delta I=I_{R}-I_{L} \neq 0
$$

$$
\vec{v}=\left[\mu_{\perp} \vec{E}+\mu_{x y} \hat{\ell} \times \vec{E}\right] \quad \begin{aligned}
& \uparrow \vec{\ell}=+\hat{\mathbf{z}} \\
& \downarrow \vec{\ell}=-\hat{\mathbf{z}}
\end{aligned}
$$

Detection of Broken Time-Reversal \& Mirror Symmetry in ${ }^{3} \mathrm{He}-\mathrm{A}$
Transverse \mathbf{e}^{-}bubble current in ${ }^{3} \mathrm{He}-\mathrm{A} \quad \Delta I=I_{R}-I_{L}$

Single Domains:

$\operatorname{Run} 1 \quad \vec{\ell}=+\hat{\mathbf{Z}}$
$\operatorname{Run} 2 \quad \vec{\ell}=-\hat{\mathbf{Z}}$

$$
\frac{\left|I_{R}-I_{L}\right|}{I_{R}+I_{L}} \approx 6 \%
$$

Detection of Broken Time-Reversal \& Mirror Symmetry in ${ }^{3} \mathrm{He}-\mathrm{A}$

Zero Transverse \mathbf{e}^{-}current in ${ }^{3} \mathrm{He}-\mathrm{B}$ (T - symmetric phase)

H. Ikegami, Y. Tsutsumi, K. Kono, Science 341, 59-62 (2013)

Detection of Broken Time-Reversal \& Mirror Symmetry in ${ }^{3} \mathrm{He}-\mathrm{A}$

Zero Transverse \mathbf{e}^{-}current in ${ }^{3} \mathrm{He}-\mathrm{B}$ (T - symmetric phase)

H. Ikegami, Y. Tsutsumi, K. Kono, Science 341, 59-62 (2013)

- Structure of Electrons in Superfluid ${ }^{3} \mathrm{He}-\mathrm{A}$
-Forces of Moving Electrons in Superfluid ${ }^{3} \mathrm{He}-\mathrm{A}$
\Downarrow
-Scattering Theory of ${ }^{3} \mathrm{He}$ Quasiparticles by Electron Bubbles

Forces on the Electron bubble in ${ }^{3} \mathrm{He}-\mathrm{A}$:

$-M \frac{d \mathbf{v}}{d t}=e \mathcal{E}+\mathbf{F}_{\mathrm{QP}}, \quad \mathbf{F}_{Q P}$ - force from quasiparticle collisions

Forces on the Electron bubble in ${ }^{3} \mathrm{He}-\mathrm{A}$:

- $M \frac{d \mathbf{v}}{d t}=e \mathcal{E}+\mathbf{F}_{\mathrm{QP}}, \quad \mathbf{F}_{Q P}$ - force from quasiparticle collisions
- $\mathbf{F}_{Q P}=-\overleftrightarrow{\eta} \cdot \mathbf{v}, \quad \stackrel{\leftrightarrow}{\eta}$ - generalized Stokes tensor
- $\stackrel{\leftrightarrow}{\eta}=\left(\begin{array}{ccc}\eta_{\perp} & \eta_{\text {AH }} & 0 \\ -\eta_{\text {AH }} & \eta_{\perp} & 0 \\ 0 & 0 & \eta_{\|}\end{array}\right)$for broken P \& T symmetries with $\hat{\mathbf{l}} \| \mathbf{e}_{z}$

Forces on the Electron bubble in ${ }^{3} \mathrm{He}-\mathrm{A}$:
$-M \frac{d \mathbf{v}}{d t}=e \mathcal{E}+\mathbf{F}_{\mathrm{QP}}, \quad \mathbf{F}_{Q P}$ - force from quasiparticle collisions

- $\mathbf{F}_{Q P}=-\overleftrightarrow{\eta} \cdot \mathbf{v}, \quad \stackrel{\leftrightarrow}{\eta}$ - generalized Stokes tensor
- $\stackrel{\leftrightarrow}{\eta}=\left(\begin{array}{ccc}\eta_{\perp} & \eta_{\mathrm{AH}} & 0 \\ -\eta_{\mathrm{AH}} & \eta_{\perp} & 0 \\ 0 & 0 & \eta_{\|}\end{array}\right)$for broken P \& T symmetries with $\hat{\mathbf{l}} \| \mathbf{e}_{z}$
- $M \frac{d \mathbf{v}}{d t}=e \mathcal{E}-\eta_{\perp} \mathbf{v}+\frac{e}{c} \mathbf{v} \times \mathbf{B}_{\text {eff }}, \quad$ for $\mathcal{E} \perp \hat{\mathbf{l}}$
- $\mathbf{B}_{\mathrm{eff}}=-\frac{c}{e} \eta_{\mathrm{AH}} \hat{\mathbf{1}} \quad B_{\mathrm{eff}} \simeq 10^{3}-10^{4} \mathrm{~T} \quad!!!$

Forces on the Electron bubble in ${ }^{3} \mathrm{He}-\mathrm{A}$:

$-M \frac{d \mathbf{v}}{d t}=e \mathcal{E}+\mathbf{F}_{\mathrm{QP}}, \quad \mathbf{F}_{Q P}$ - force from quasiparticle collisions

- $\mathbf{F}_{Q P}=-\overleftrightarrow{\eta} \cdot \mathbf{v}, \quad \overleftrightarrow{\eta}$ - generalized Stokes tensor
- $\overleftrightarrow{\eta}=\left(\begin{array}{ccc}\eta_{\perp} & \eta_{\mathrm{AH}} & 0 \\ -\eta_{\mathrm{AH}} & \eta_{\perp} & 0 \\ 0 & 0 & \eta_{\|}\end{array}\right)$for broken P \& T symmetries with $\hat{\mathbf{l}} \| \mathbf{e}_{z}$
- $M \frac{d \mathbf{v}}{d t}=e \mathcal{E}-\eta_{\perp} \mathbf{v}+\frac{e}{c} \mathbf{v} \times \mathbf{B}_{\text {eff }}, \quad$ for $\mathcal{E} \perp \hat{\mathbf{l}}$
- $\mathbf{B}_{\mathrm{eff}}=-\frac{c}{e} \eta_{\mathrm{AH}} \hat{\mathbf{1}} \quad B_{\mathrm{eff}} \simeq 10^{3}-10^{4} \mathrm{~T} \quad!!!$
- Mobility: $\mathbf{v}=\overleftrightarrow{\mu} \mathcal{E}, \quad$ where $\overleftrightarrow{\mu}=e \overleftrightarrow{\eta}^{-1}$

Differential cross section for Bogoliubov QP-lon Scattering $k_{f} R=11.17$

$>$ O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

Comparison between Theory and Experiment for the Drag and Transverse Forces

Summary

- Electrons in ${ }^{3} \mathrm{He}-\mathrm{A}$ are "dressed" by a spectrum of Chiral Fermions
- Electrons are "Left handed" in a Right-handed Chiral Vacuum $\rightsquigarrow L_{z} \approx-100 \hbar$
- Experiment: RIKEN mobility experiments \rightsquigarrow Observation an AHE in ${ }^{3} \mathrm{He}-\mathrm{A}$
- Origin: Broken Mirror \& Time-Reversal Symmetry
- Theory: Scattering of Bogoliubov QPs by the dressed Ion \rightsquigarrow
- Drag Force $\left(-\eta_{\perp} \mathbf{v}\right)$ - Transverse Force $\left(\frac{e}{c} \mathbf{v} \times \mathbf{B}_{\text {eff }}\right)$
- Anomalous Hall Field: - $\mathbf{B}_{\text {eff }} \approx \frac{\Phi_{0}}{3 \pi^{2}} k_{f}^{2}\left(k_{f} R\right)^{2}\left(\frac{\eta_{\text {АН }}}{\eta_{\mathrm{N}}}\right) \mathbf{l} \simeq 10^{3}-10^{4} \mathrm{~T} \mathbf{l}$

Fundamental Connections between Physics at Different Scales

Fundamental Connections between Physics at Different Scales

Dynamical Consequences of Spontaneous Symmetry Breaking New Bosonic Excitations

- "It is only slightly overstating the case to say that physics is the study of symmetry" - P. W. Anderson

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

The CMS Collaboration

Dynamical Consequences of Spontaneous Symmetry Breaking

Higgs Boson with mass $M=125 \mathrm{GeV}$

Dynamical Consequences of Spontaneous Symmetry Breaking
Scalar Higgs Boson (spin $J=0$) [P. Higgs, PRL 13, 508 1964]
Energy Functional for the Higgs Field

$$
\mathcal{U}[\Delta]=\int d V\left\{\alpha|\Delta|^{2}+\beta|\Delta|^{4}+\frac{1}{2} c^{2}|\nabla \Delta|^{2}\right\}
$$

-Broken Symmetry State: $\Delta=\sqrt{|\alpha| / 2 \beta}$

Space-Time Fluctuations about the Broken Symmetry Vacuum State

$$
\Delta(\mathbf{r}, t)=\Delta+D(\mathbf{r}, t) \triangleright \text { Eigenmodes: } D^{(\pm)}=D \pm D^{*} \text { (Conjugation Parity) }
$$

- $\mathcal{L}=\int d^{3} r\left\{\frac{1}{2}\left[\left(\dot{D}^{(+)}\right)^{2}+\left(\dot{D}^{(-)}\right)^{2}\right]-2 \Delta^{2}\left(D^{(+)}\right)^{2}-\frac{1}{2}\left[c^{2}\left(\boldsymbol{\nabla} D^{(+)}\right)^{2}+c^{2}\left(\boldsymbol{\nabla} D^{(-)}\right)^{2}\right]\right\}$

$$
\nabla \partial_{t}^{2} D^{(-)}-c^{2} \nabla^{2} D^{(-)}=0
$$

Massless Nambu-Goldstone Mode
$-\partial_{t}^{2} D^{(+)}-c^{2} \nabla^{2} D^{(+)}+4 \Delta^{2} D^{(+)}=0$
Massive Higgs Mode: $M=2 \Delta$

Dynamical Consequences of Spontaneous Symmetry Breaking
BCS Condensation of Spin-Singlet $(S=0)$, S-wave $(L=0)$ "Scalar" Cooper Pairs
Ginzburg-Landau Functional

$$
F[\Delta]=\int d V\left\{\alpha|\Delta|^{2}+\beta|\Delta|^{4}+\kappa|\nabla \Delta|^{2}\right\}
$$

\triangleright Order Parameter: $\Delta=\sqrt{|\alpha| / 2 \beta}$

Space-Time Fluctuations of the Condensate Order Parameter

$$
\Delta(\mathbf{r}, t)=\Delta+D(\mathbf{r}, t)>\text { Eigenmodes: } D^{(\pm)}=D \pm D^{*} \text { (Fermion "Charge" Parity) }
$$

- $\mathcal{L}=\int d^{3} r\left\{\frac{1}{2}\left[\left(\dot{D}^{(+)}\right)^{2}+\left(\dot{D}^{(-)}\right)^{2}\right]-2 \Delta^{2}\left(D^{(+)}\right)^{2}-\frac{1}{2}\left[v^{2}\left(\boldsymbol{\nabla} D^{(+)}\right)^{2}+v^{2}\left(\boldsymbol{\nabla} D^{(-)}\right)^{2}\right]\right\}$

$$
\partial_{t}^{2} D^{(-)}-v^{2} \nabla^{2} D^{(-)}=0 \quad \forall \partial_{t}^{2} D^{(+)}-v^{2} \nabla^{2} D^{(+)}+4 \Delta^{2} D^{(+)}=0
$$

Anderson-Bogoliubov Mode

Amplitude Higgs Mode: $\quad M=2 \Delta$

Dynamical Consequences of Spontaneous Symmetry Breaking

 - Observation of Higgs Modes in Superfluid ${ }^{3} \mathrm{He}-\mathrm{B}$
Observation of a New Sound-Attenuation Peak in Superfluid ${ }^{3} \mathrm{He}-\boldsymbol{B}$

R. W. Giannetta, ${ }^{(a)}$ A. Ahonen, ${ }^{(b)}$ E. Polturak, J. Saunders, E. K. Zeise, R. C. Richardson, and D. M. Lee

Laboratory of Atomic and Solid State Physics and Materials Science Center, Cornell Untversity, Ithaca, New York 14853
(Received 25 March 1980)
Results of zero-sound attenuation mensurements in ${ }^{3} \mathrm{He}-B$, nt frequencles up to 60 MHz and pressures between 0 and 20 bars , are reported. At frequencles of 30 MHz and above, a new attenuntion feature is observed which bears the signature of a collective mode of the superfluid.

Measurements of High-Frequency Sound Propagation in ${ }^{3} \mathrm{He}-B$
D. B. Mast, Bimal K. Sarma, J. R. Owers-Bradley, I. D. Calder,

> J. B. Ketterson, and W. P. Halperin

Department of Physics and Astronomy and Materials Research Center, Northvestern University,
Evanston, Illinois 60201
(Received 10 April 1980)
Measurements of the attenuation and velocity of pulsed high-frequency sound have been performed up to 133 MHz in superfluid ${ }^{3} \mathrm{He}-B$. A new collective mode of the order parameter was discovered at a frequency extrapolated to T_{c} of $\omega=(1.165 \pm 0.05) \Delta_{B C S}\left(T_{c}\right)$, where $\Delta_{\text {ICS }}(T)$ is the onergy gap in the weak-coupling BCS theory. The group velocity has been observed to decrease by as much as ${ }^{3}$ of the zero-sound veloctty.

Retrospective (1961-2022) on the impact of this discovery:
J. A. Sauls, J.Low Temp. Phys. 208, 1/2, 87-118 (2022).

Field Theory of the Bosonic Excitations of Superfluid ${ }^{3} \mathrm{He}-\mathrm{B}$

$$
{ }^{3} \mathrm{He}-\mathrm{B}: \quad B_{\alpha i}=\frac{1}{\sqrt{3}} \Delta \delta_{\alpha i} \quad L=1, \quad S=1 \rightsquigarrow J=0 \quad C=+1
$$

- Symmetry of ${ }^{3} \mathrm{He}-\mathrm{B}: \mathrm{H}=\mathrm{SO}(3), \mathrm{J} \mathrm{T}$
- Fluctuations: $\mathcal{D}_{\alpha i}(\mathbf{r}, t)=A_{\alpha i}(\mathbf{r}, t)-B_{\alpha i}=\sum_{J, m} D_{J, m}(\mathbf{r}, t) t_{\alpha i}^{(J, m)}$
- Lagrangian:

$$
\begin{gathered}
\mathcal{L}=\int d^{3} r\left\{\tau \operatorname{Tr}\left\{\dot{\mathcal{D}} \dot{\mathcal{D}}^{\dagger}\right\}-\alpha \operatorname{Tr}\left\{\mathcal{D}^{\dagger}\right\}-\sum_{p=1}^{5} \beta_{p} u_{p}(\mathcal{D})-\sum_{l=1}^{3} K_{l} v_{l}(\partial \mathcal{D})\right\} \\
\partial_{t}^{2} D_{J, m}^{(\mathrm{C})}+E_{J, m}^{(\mathrm{C})}(\mathbf{q})^{2} D_{J, m}^{(\mathrm{C})}=\frac{1}{\tau} \eta_{J, m}^{(\mathrm{C})} \\
\text { with } \quad J=\{0,1,2\}, m=-J \ldots+J, \mathrm{C}= \pm 1
\end{gathered}
$$

-Nambu's Boson-Fermion Mass Relations for ${ }^{3} \mathrm{He}$-B: JAS \& T. Mizushima, Phys. Rev. B 95, 094515 (2017)

Spectrum of Bosonic Modes of Superfluid ${ }^{3} \mathrm{He}-\mathrm{B}$: Condensate is $J^{\mathrm{C}}=0^{+}$
-4 Nambu-Goldstone Modes \& 14 Higgs modes

$$
E_{J, m}^{(\mathrm{C})}(\mathbf{q})=\sqrt{M_{J, \mathrm{C}}^{2}+\left(c_{J,|m|}^{(\mathrm{C})}|\mathbf{q}|\right)^{2}}
$$

Mode	Symmetry	Mass	Name
$D_{0, m}^{(+)}$	$J=0, \mathrm{C}=+1$	2Δ	Amplitude Higgs
$D_{0, m}^{(-)}$	$J=0, \mathrm{C}=-1$	0	NG Phase Mode
$D_{1, m}^{(+)}$	$J=1, \mathrm{C}=+1$	0	NG Spin-Orbit Modes
$D_{1, m}^{(-)}$	$J=1, \mathrm{C}=-1$	2Δ	Spin-Orbit Higgs Modes
$D_{2, m}^{(+)}$	$J=2, \mathrm{C}=+1$	$\sqrt{\frac{8}{5}} \Delta$	2^{+}Higgs Modes
$D_{2, m}^{(-)}$	$J=2, \mathrm{C}=-1$	$\sqrt{\frac{12}{5}} \Delta$	2^{-}Higgs Modes

-Vdovin, Maki, Wölfle, Serene, Nagai, Schopohl, JAS, Volovik, R. Fishman, R. McKenzie, G. Moores, ...

Bosonic Mode Spectrum for ${ }^{3} \mathrm{He}-\mathrm{B}$

Bosonic Excitations of ${ }^{3} \mathbf{H e}-\mathrm{B}$

$$
\begin{aligned}
& \text { Goldstone Mode } \mathbf{w} / \mathbf{J}=\mathbf{0} \longrightarrow \mathrm{D}_{00}^{(-)}=i|\Delta| \underbrace{\varphi(\mathrm{q}, \omega)}_{\text {phase mode }} \\
& \quad\left(\partial_{t}^{2}-c_{00}^{2} \nabla^{2}\right) \mathrm{D}_{00}^{(-)}=\ldots,
\end{aligned}
$$

Pair Excitons w/ J=2+/-

JAS \& J. Serene, PRL 1982

Dynamical Consequences of Spontaneous Symmetry Breaking

Higgs Mode with mass: $M=500 \mathrm{neV}$ and spin $J=2$ at Cornell \& Northwestern

-R. Giannetta et al., PRL 45, 262 (1980) D. Mast et al. Phys. Rev. Lett. 45, 266 (1980)

Vacuum Polarization \rightsquigarrow Mass shift of the $J^{\mathrm{C}}=2^{+}$Higgs Mode in ${ }^{3} \mathrm{He}-\mathrm{B}$

- Measurements: D. Mast et al. PRL 45, 266 (1980)
- Vacuum polarization in both ph and pp Channels
- Exchange p-h channel: $F_{2}^{a}=-0.88$
R. Fishman and JAS PRB B 33, 6068, 1986.
- Attractive f-wave pairing interaction

$$
\Downarrow
$$

- Higgs Modes with $J=4^{ \pm}$with $M \lesssim 2 \Delta$!
\Downarrow
Discovery of an Excited Pair State in ${ }^{3} \mathrm{He}-\mathrm{B}$
J. Davis et al., Nature Physics 4, 571 (2008).
$-J A S$ and J. W. Serene, Coupling of Order-Parameter Modes with L>1 to Zero Sound in ${ }^{3} \mathrm{He}-\mathrm{B}$, Phys. Rev. B 23, 4798 (1982)
-JAS and T. Mizushima, On Nambu's Boson-Fermion Mass Relations, Phys. Rev. B 95, 094515 (2017)

Transverse Waves in Superfluid ${ }^{3} \mathrm{He}-\mathrm{B}$

G. F. Moores ${ }^{a}$ and J. A. Sauls ${ }^{a, b}$
${ }^{a}$ Department of Physics \S Astronomy, Northwestern University, Evanston, Illinois 60208, USA
${ }^{b}$ Nordita, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark (Received October 7, 1992)

- Liquid Helium flows without resistance
- ... but also behaves like a solid!
- Sound waves propagate like polarized light
- Emergence of quanta that transport momentum \& angular momentum
- Spin=2 Higgs Boson of the Superfluid Vacuum
- "Electromagnetic Absorption in Anisotropic Superconductors", P. Hirschfeld et al., PRB 40, 6695 (1989)

Propagating Transverse Currents in Superfluid ${ }^{3} \mathrm{He}-\mathrm{B}$

Transverse Sound Waves Propagate in Superfluid ${ }^{3} \mathrm{He}$

Low Temperature Physic Group Northwestern University

Yoonseok Lee Florida

Tom Haard Berkeley

Bill Halperin Northwestern

$J=2^{-}, m= \pm 1$ Higgs Modes Transport Mass and Spin

- "Transverse Waves in Superfluid ${ }^{3} \mathrm{He}-\mathrm{B} "$, G. Moores and JAS, JLTP 91, 13 (1993)
- "Electromagnetic Absorption in Anisotropic Superconductors", P. Hirschfeld et al., PRB 40, 6695 (1989)

$$
C_{t}(\omega)=\sqrt{\frac{F_{1}^{s}}{15}} v_{f}[\rho_{n}(\omega)+\frac{2}{5} \rho_{s}(\omega)\{\underbrace{\frac{\omega^{2}}{(\omega+i \Gamma)^{2}-\frac{12}{5} \Delta^{2}-\frac{2}{5}\left(q^{2} v_{f}^{2}\right)}}_{D_{2, \pm 1}^{(-)}}\}]^{\frac{1}{2}}
$$

Transverse Zero Sound Probagation in Superfluid ${ }^{3} \mathrm{He}-\mathrm{B}$: Cavity Oscillations of TZS

-Y. Lee et al. Nature 400 (1999)

B \square

Faraday Rotation: Magneto-Acoustic Birefringence of Transverse Currents

-"Magneto-Acoustic Rotation of Transverse Waves in ${ }^{3} \mathrm{He}$-B", J. A. Sauls et al., Physica B, 284,267 (2000)

$$
C_{\mathrm{RCP}}^{\operatorname{RCP}}(\omega)=v_{f}[\frac{F_{1}^{s}}{15} \rho_{n}(\omega)+\frac{2 F_{1}^{s}}{75} \rho_{s}(\omega) \underbrace{\left\{\frac{\omega^{2}}{(\omega+i \Gamma)^{2}-\Omega_{2, \pm}^{(-)}(\mathbf{q})}\right\}}_{D_{2, \pm 1}^{(-)}}\}]^{\frac{1}{2}}
$$

$$
\Omega_{2, \pm}^{(-)}(\mathbf{q})=\sqrt{\frac{12}{5}} \Delta \pm g_{2-} \gamma H_{\mathrm{eff}}
$$

$$
\left(\frac{C_{\mathrm{RCP}}-C_{\mathrm{LCP}}}{C_{t}}\right) \simeq g_{2^{-}}\left(\frac{\gamma H_{\mathrm{eff}}}{\omega}\right)
$$

- Faraday Rotation Period $\left(\gamma H_{\text {eff }} \ll\left(\omega-\Omega_{2}^{(-)}\right)\right)$:

$$
\Lambda \simeq \frac{4 \pi C_{t}}{g_{2}-\gamma H} \simeq 500 \mu m, \quad H=200 G
$$

- Discovery of the acoustic Faraday effect in superfluid ${ }^{3} \mathrm{He}-\mathrm{B}, \mathrm{Y}$. Lee, et al. Nature 400, 431 (1999)

Faraday Rotation: Magneto-Acoustic Birefringence of Transverse Currents

"Broken Symmetry \& Non-Equilibrium Superfluid ${ }^{3} \mathrm{He}$ ", J. A. Sauls, Lecture Notes - Les Houches 1999, Eds. H. Godfrin \& Y. Bunkov, Elsievier (2000)

Large Faraday Rotations vs. '` Blue Tuning' $B=1097$ G

Why I came and built a career in Physics at Northwestern

The Reason Northwestern is a Great Place to Pursue Research in Physics

The Coldest Place in North America is in the Basement of Tech!

Low Temperatures enable

Technologies

From

High Energy Accelerators

> To

Quantum Sensors and Quantum Computers

Superconducting Qubits \& Quantum Circuits

 Engineered "Atoms" you can hold in your hand!

Photo: Man Nugyen
Superconducting Qubit Coupled to Microwave Resonator

Quantized Energy Levels

Tuning parameter:
External magnetic flux Gate voltage

Quantum Computing with SRF Technology 달 Fermilab

Anna Grassellino

superconducting Niobium
RF cavities $Q=4 \times 10^{11}$

Nik Zhelev

Wave Ngampruetikorn CAPST

3D SRF architecture for long coherence Qubits

SRF cavities coupled to Josephson junctions

Understand SRF cavities
Operating at the single photon level

SRF cavities at ULT for Dark Matter detection

State of the art Blue Fors Cryogenic platforms:
"push button" $T=6 \mathrm{mK}$

Recent Members of the Theory Group

Thank You!

The End

Extra Slides

Bardeen-Cooper-Schrieffer (BCS) Theory from $10^{-9} \mathrm{~K}$ to $10^{+9} \mathrm{~K}$

T[K]			Key Discoveries
		1908	Helium is liquified
10^{+12}	Degeneracy of Hadronic Matter	$\begin{aligned} & 1911 \\ & 1933 \\ & 1935 \\ & 1950 \\ & 1950 \end{aligned}$	Superconductivity is discovered in Hg Diamagnetism - Meissner Effect London's Theory Ginzburg-Landau Theory
10^{+9}	BCS pairing in Neutron Stars Rotational Dynamics of Pulsars	1956 1957 1957	Copper Instability BCS Pairing Theory Landau Fermi Liquid Theory
10^{+6}	Degeneracy of White Dwarf Stars	1957 1958 1959 1959	Abrikosov's Theory of Type II SC Pairing in Nuclei and Nuclear Matter Gauge-Invariant Pairing Theory
	Electron Degeneracy in Metals	$\begin{aligned} & 1959 \\ & 1961 \\ & 1962 \end{aligned}$	Field Theory formulation of BCS Theory Theory of Spin-Triplet Pairing Josephson Effect
10^{0}	Superconductivity in Metals	$\begin{aligned} & 1967 \\ & 1969 \\ & 1980 \end{aligned}$	Pulsars discovered - Hewish \& Bell Pulsar Glitches observed in Vela Superfluid hydrodynamics of NS
10^{-3}	BCS Superfluidity in Liquid ${ }^{3} \mathrm{He}$BEC in Atomic Gases	1972 1979 1982 1986 1994	Discovery of Triplet, P-wave Superfluid ${ }^{3} \mathrm{He}$ Discovery of Heavy Electron Superconductors Exotic Pairing in U-based Heavy Fermions High $\mathrm{T}_{c} \mathrm{CuO}$ Superconductivity Exotic Pairing discovered in $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$
10^{-6}		1995 2001 2008	D-wave Pairing identified in $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-x}$ Co-existent Ferromagnetism \& Superconductivty Fe-based Superconductors discovered
10^{-9}	Pairing in Fermi Gases	$\begin{aligned} & 1995 \\ & 1998 \\ & 2007 \end{aligned}$	Discovery of BEC in cold atomic ${ }^{87} \mathrm{Rb}$ Degeneracy of Cold Fermionic Gases: ${ }^{6} \mathrm{Li}$ BEC-BCS Condensation in ${ }^{6} \mathrm{Li},{ }^{40} \mathrm{~K}$
		2008	Topological Superfluids \& Superconductors

Observation of the Higgs Mode in a BCS Superdonductor

Raman Scattering by Superconducting-Gap Excitations and Their Coupling to Charge-Density Waves

R. Sooryakumar and M. V. Klein

Department of Physics and Materials Research Laboratory, University of Illnois at Urbana-Champaign, Urbana, Illinois 61801
(Received 24 March 1980)
$2 \mathrm{H}-\mathrm{NbSe}_{2}$ undergoes a charge-density-wave (CDW) distortion at 33 K which induces A and E Raman-active phonon modes. These are joined in the superconducting state at 2 K by new A and E Raman modes close in energy to the BCS gap 2Δ. Magnetic fields suppress the intensity of the new modes and enhance that of the CDW-induced modes, thus providing evidence of coupling between the superconducting-gap excitations and the CDW.

Dynamical Consequences of Spontaneous Symmetry Breaking
Higgs Mode with mass: $M=3 \mathrm{meV}$ and spin $J=0$ in NbSe_{2}

Raman Absorption in NbSe_{2}

R. Sooyakumar \& M. Klein, PRL 45, 660 (1980)

M. Meásson et al. PRB B 89, 060503(R) (2014)

- $\hbar \omega_{\gamma_{1}}=\hbar \omega_{\gamma_{2}}+2 \Delta$
- Amplitude Higgs - CDW Phonon Coupling
-Theory: P. Littlewood \& C. Varma, PRL 47, 811 (1981)

Parity Violation in a Superfluid Vacuum of Liquid ${ }^{3} \mathrm{He}$
Chiral P-wave BCS Condensate

$$
\begin{aligned}
\left|\Psi_{N}\right\rangle= & {\left[\iint d \mathbf{r}_{1} d \mathbf{r}_{2} \Psi_{s_{1} s_{2}}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \psi_{s_{1}}^{\dagger}\left(\mathbf{r}_{1}\right) \psi_{s_{2}}^{\dagger}\left(\mathbf{r}_{2}\right)\right]^{N / 2}|\mathrm{vac}\rangle } \\
& \Psi_{s_{1} s_{2}}(\mathbf{r})=f(|\mathbf{r}| / \xi)(x+i y) \chi_{s_{1} s_{2}}^{(1,0)} \\
& \text { } P \text { P.W. Anderson \& P. Morel, Phys. Rev. 123, 1911 (1961) }
\end{aligned}
$$

$$
\mathrm{SO}(3)_{\mathrm{S}} \times \mathrm{SO}(3)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{N}} \times \mathrm{T} \times \mathrm{P} \longrightarrow \mathrm{SO}(2)_{\mathrm{S}} \times \mathrm{U}(1)_{\mathrm{N}-\mathrm{L}_{z}} \times \mathrm{Z}_{2}
$$

Realized as the Ground State of Superfluid ${ }^{3} \mathrm{He}$

Momentum-Space Topology of Nambu-Bogoliubov Hamiltonian

Fermionic Hamiltonian for 2D Chiral Superfluid (${ }^{3} \mathrm{He}-\mathrm{A}$ Thin Film \& $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$?):

$$
\widehat{H}=\left(\begin{array}{cc}
\left(|\mathbf{p}|^{2} / 2 m^{*}-\mu\right) & c\left(p_{x}+i p_{y}\right) \\
c\left(p_{x}-i p_{y}\right) & -\left(|\mathbf{p}|^{2} / 2 m^{*}-\mu\right)
\end{array}\right)=\overrightarrow{\mathbf{m}}(\mathbf{p}) \cdot \widehat{\overrightarrow{\boldsymbol{\tau}}}
$$

$$
\overrightarrow{\mathbf{m}}=\left(c p_{x}, \mp c p_{y}, \xi(\mathbf{p})\right) \text { with }|\overrightarrow{\mathbf{m}}(\mathbf{p})|^{2}=\left(|\mathbf{p}|^{2} / 2 m-\mu\right)^{2}+c^{2}|\mathbf{p}|^{2}>0, \mu \neq 0
$$

-Topological Invariant for 2D chiral SC \leftrightarrow QED in $d=2+1$ [G.E. Volovik, JETP 1988]:

$$
\begin{aligned}
& N_{\mathrm{C}}=\int \frac{d^{2} p}{4 \pi} \hat{\mathbf{m}}(\mathbf{p}) \cdot\left(\frac{\partial \hat{\mathbf{m}}}{\partial p_{x}} \times \frac{\partial \hat{\mathbf{m}}}{\partial p_{y}}\right)=\left\{\begin{array}{cc}
\pm 1 ; & \mu>0 \text { and } \Delta \neq 0 \\
0 ; & \mu<0 \text { or } \Delta=0
\end{array}\right. \\
& \text { "Vacuum" }(\Delta=0) \& N_{\mathrm{C}}=0 \mid{ }^{3} \mathrm{He}-\mathrm{A}(\Delta \neq 0) \text { with } N_{\mathrm{C}}=1
\end{aligned}
$$

Massless Chiral Fermions in the $2 \mathrm{D}{ }^{3} \mathrm{He}-\mathrm{A}$ Films Edge Fermions: $G_{\text {edge }}^{\mathrm{R}}(\mathbf{p}, \varepsilon ; x)=\frac{\pi \Delta\left|\mathbf{p}_{x}\right|}{\varepsilon+i \gamma-\varepsilon_{\mathrm{bs}}\left(\mathbf{p}_{\|}\right)} e^{-x / \xi_{\Delta}}$

$$
\xi_{\Delta}=\hbar v_{f} / 2 \Delta \approx 10^{2} \AA \gg \hbar / p_{f}
$$

- $\varepsilon_{\mathrm{bs}}=-c p_{\|}$with $c=\Delta / p_{f} \ll v_{f}$
- Broken P \& T Edge Current

T-matrix description of Quasiparticle-Ion scattering

- Lippmann-Schwinger equation for the T-matrix $\left(\varepsilon=E+i \eta ; \eta \rightarrow 0^{+}\right)$:
$\hat{T}_{S}^{R}\left(\mathbf{k}^{\prime}, \mathbf{k}, E\right)=\hat{T}_{N}^{R}\left(\mathbf{k}^{\prime}, \mathbf{k}\right)+\int \frac{d^{3} k^{\prime \prime}}{(2 \pi)^{3}} \hat{T}_{N}^{R}\left(\mathbf{k}^{\prime}, \mathbf{k}^{\prime \prime}\right)\left[\hat{G}_{S}^{R}\left(\mathbf{k}^{\prime \prime}, E\right)-\hat{G}_{N}^{R}\left(\mathbf{k}^{\prime \prime}, E\right)\right] \hat{T}_{S}^{R}\left(\mathbf{k}^{\prime \prime}, \mathbf{k}, E\right)$
$\hat{G}_{S}^{R}(\mathbf{k}, E)=\frac{1}{\varepsilon^{2}-E_{\mathbf{k}}^{2}}\left(\begin{array}{cc}\varepsilon+\xi_{k} & -\Delta(\hat{\mathbf{k}}) \\ -\Delta^{\dagger}(\hat{\mathbf{k}}) & \varepsilon-\xi_{k}\end{array}\right), \quad E_{\mathbf{k}}=\sqrt{\xi_{k}^{2}+|\Delta(\hat{\mathbf{k}})|^{2}}, \quad \xi_{k}=\frac{\hbar^{2} k^{2}}{2 m^{*}}-\mu$
- Normal-state T-matrix:
$\hat{T}_{N}^{R}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)=\left(\begin{array}{cc}t_{N}^{R}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right) & 0 \\ 0 & -\left[t_{N}^{R}\left(-\hat{\mathbf{k}}^{\prime},-\hat{\mathbf{k}}\right)\right]^{\dagger}\end{array}\right) \quad$ in p-h (Nambu) space, where
$t_{N}^{R}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)=-\frac{1}{\pi N_{f}} \sum_{l=0}^{\infty}(2 l+1) e^{i \delta_{l}} \sin \delta_{l} P_{l}\left(\hat{\mathbf{k}}^{\prime} \cdot \hat{\mathbf{k}}\right), \quad P_{l}(x)$ - Legendre function
-Hard-sphere potential $\rightsquigarrow \tan \delta_{l}=j_{l}\left(k_{f} R\right) / n_{l}\left(k_{f} R\right)$ - spherical Bessel functions
- $k_{f} R$ - determined by the Normal-State Mobility $\rightsquigarrow k_{f} R=11.17(R=1.42 \mathrm{~nm})$

Weyl Fermion Spectrum bound to the Electron Bubble

$$
\mu_{\mathrm{N}}=\frac{e}{n_{3} p_{f} \sigma_{\mathrm{N}}^{\text {tr }}} \Leftarrow \mu_{\mathrm{N}}^{\exp }=1.7 \times 10^{-6} \frac{\mathrm{~m}^{2}}{V \mathrm{~s}}
$$

$$
\tan \delta_{l}=j_{l}\left(k_{f} R\right) / n_{l}\left(k_{f} R\right) \Rightarrow \sigma_{N}^{\mathrm{tr}}=\frac{4 \pi}{k_{f}^{2}} \sum_{l=0}^{\infty}(l+1) \sin ^{2}\left(\delta_{l+1}-\delta_{l}\right) \rightsquigarrow \quad k_{f} R=11.17
$$

Current bound to an electron bubble $\left(k_{f} R=11.17\right)$

$\mathbf{j}(\mathbf{r}) / v_{f} N_{f} k_{B} T_{c}=j_{\phi}(\mathbf{r}) \hat{\mathbf{e}}_{\phi}$
\Longrightarrow
O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

Angular momentum of an electron bubble in ${ }^{3} \mathrm{He}-\mathrm{A}\left(k_{f} R=11.17\right)$

$$
\mathbf{L}(T \rightarrow 0) \approx-\hbar N_{\text {bubble }} \hat{\mathbf{l}} / 2 ; \quad N_{\text {bubble }}=n_{3} \frac{4 \pi}{3} R^{3} \approx 200{ }^{3} \mathrm{He} \text { atoms }
$$

Determination of the Stokes Tensor from the QP-Ion T-matrix
(i) Fermi's golden rule and the QP scattering rate:
$\Gamma\left(\mathbf{k}^{\prime}, \mathbf{k}\right)=\frac{2 \pi}{\hbar} W\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right) \delta\left(E_{\mathbf{k}^{\prime}}-E_{\mathbf{k}}\right), W\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)=\left.\frac{1}{2} \sum_{\tau^{\prime} \sigma^{\prime} ; \tau \sigma}|\overbrace{\left\langle\mathbf{k}^{\prime}, \sigma^{\prime}, \tau^{\prime}\right.}^{\text {outgoing }}| \hat{T}_{S} \overbrace{|\mathbf{k}, \sigma, \tau\rangle}^{\text {incoming }}\right|^{2}$
(ii) Drag force from QP-ion collisions (linear in v): Baym et al. PRL 22, 20 (1969)
$\mathbf{F}_{\mathrm{QP}}=-\sum_{\mathbf{k}, \mathbf{k}^{\prime}} \hbar\left(\mathbf{k}^{\prime}-\mathbf{k}\right)\left[\hbar \mathbf{k}^{\prime} \mathbf{v} f_{\mathbf{k}}\left(-\frac{\partial f_{\mathbf{k}^{\prime}}}{\partial E}\right)-\hbar \mathbf{k} \mathbf{v}\left(1-f_{\mathbf{k}^{\prime}}\right)\left(-\frac{\partial f_{\mathbf{k}}}{\partial E}\right)\right] \Gamma\left(\mathbf{k}^{\prime}, \mathbf{k}\right)$
(iii) Microscopic reversibility condition: $W\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}:+\mathbf{l}\right)=W\left(\hat{\mathbf{k}}, \hat{\mathbf{k}}^{\prime}:-\mathbf{l}\right)$

Broken T and mirror symmetries in ${ }^{3} \mathrm{He}-\mathrm{A} \Rightarrow$ fixed $\hat{\mathbf{l}} \rightsquigarrow W\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right) \neq W\left(\hat{\mathbf{k}}, \hat{\mathbf{k}}^{\prime}\right)$
(iv) Generalized Stokes tensor:
$\mathbf{F}_{\mathrm{QP}}=-\overleftrightarrow{\eta} \cdot \mathbf{v} \rightsquigarrow \eta_{i j}=n_{3} p_{f} \int_{0}^{\infty} d E\left(-2 \frac{\partial f}{\partial E}\right) \sigma_{i j}(E) \quad, \quad \stackrel{\leftrightarrow}{\eta}=\left(\begin{array}{ccc}\eta_{\perp} & \eta_{\mathrm{AH}} & 0 \\ -\eta_{\mathrm{AH}} & \eta_{\perp} & 0 \\ 0 & 0 & \eta_{\|}\end{array}\right)$
$n_{3}=\frac{k_{f}^{3}}{3 \pi^{2}}-{ }^{3} \mathrm{He}$ particle density, $\quad \sigma_{i j}(E)$ - transport scattering cross section,

$$
f(E)=\left[\exp \left(E / k_{B} T\right)+1\right]^{-1}-\text { Fermi Distribution }
$$

Mirror-symmetric scattering \Rightarrow longitudinal drag force

$$
\mathbf{F}_{\mathbf{Q P}}=-\overleftrightarrow{\eta} \cdot \mathbf{v}, \quad \eta_{i j}=n_{3} p_{f} \int_{0}^{\infty} d E\left(-2 \frac{\partial f}{\partial E}\right) \sigma_{i j}(E)
$$

Subdivide by mirror symmetry:
$W\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)=W^{(+)}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)+W^{(-)}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)$,
$\sigma_{i j}(E)=\sigma_{i j}^{(+)}(E)+\sigma_{i j}^{(-)}(E)$,

$\sigma_{i j}^{(+)}(E)=\frac{3}{4} \int_{E \geq\left|\Delta\left(\hat{\mathbf{k}}^{\prime}\right)\right|} d \Omega_{\mathbf{k}^{\prime}} \int_{E \geq|\Delta(\hat{\mathbf{k}})|} \frac{d \Omega_{\mathbf{k}}}{4 \pi}\left[\left(\hat{\mathbf{k}}_{i}^{\prime}-\hat{\mathbf{k}}_{i}\right)\left(\hat{\mathbf{k}}_{j}^{\prime}-\hat{\mathbf{k}}_{j}\right)\right] \frac{d \sigma^{(+)}}{d \Omega_{\mathbf{k}^{\prime}}}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}} ; E\right)$
Mirror-symmetric cross section: $\quad W^{(+)}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)=\left[W\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)+W\left(\hat{\mathbf{k}}, \hat{\mathbf{k}}^{\prime}\right)\right] / 2$

$$
\frac{d \sigma^{(+)}}{d \Omega_{\mathbf{k}^{\prime}}}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}} ; E\right)=\left(\frac{m^{*}}{2 \pi \hbar^{2}}\right)^{2} \frac{E}{\sqrt{E^{2}-\left|\Delta\left(\hat{\mathbf{k}}^{\prime}\right)\right|^{2}}} W^{(+)}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right) \frac{E}{\sqrt{E^{2}-|\Delta(\hat{\mathbf{k}})|^{2}}}
$$

\rightsquigarrow Stokes Drag $\eta_{x x}^{(+)}=\eta_{y y}^{(+)} \equiv \eta_{\perp}, \eta_{z z}^{(+)} \equiv \eta_{\|}$, No transverse force $\left[\eta_{i j}^{(+)}\right]_{i \neq j}=0$

Mirror-antisymmetric scattering \Rightarrow transverse force

$$
\mathbf{F}_{\mathrm{QP}}=-\overleftrightarrow{\eta} \cdot \mathbf{v}, \quad \eta_{i j}=n_{3} p_{f} \int_{0}^{\infty} d E\left(-2 \frac{\partial f}{\partial E}\right) \sigma_{i j}(E)
$$

Subdivide by mirror symmetry:

$$
\begin{aligned}
& W\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)=W^{(+)}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)+W^{(-)}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right), \\
& \sigma_{i j}(E)=\sigma_{i j}^{(+)}(E)+\sigma_{i j}^{(-)}(E)
\end{aligned}
$$

$$
\sigma_{i j}^{(-)}(E)=\frac{3}{4} \int_{E \geq\left|\Delta\left(\hat{\mathbf{k}}^{\prime}\right)\right|} d \Omega_{\mathbf{k}^{\prime}} \int_{E \geq|\Delta(\hat{\mathbf{k}})|} \frac{d \Omega_{\mathbf{k}}}{4 \pi}\left[\epsilon_{i j k}\left(\hat{\mathbf{k}}^{\prime} \times \hat{\mathbf{k}}\right)_{k}\right] \frac{d \sigma^{(-)}}{d \Omega_{\mathbf{k}^{\prime}}}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}} ; E\right)\left[f(E)-\frac{1}{2}\right]
$$

Mirror-antisymmetric cross section: $\quad W^{(-)}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)=\left[W\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)-W\left(\hat{\mathbf{k}}, \hat{\mathbf{k}}^{\prime}\right)\right] / 2$
$\frac{d \sigma^{(-)}}{d \Omega_{\mathbf{k}^{\prime}}}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}} ; E\right)=\left(\frac{m^{*}}{2 \pi \hbar^{2}}\right)^{2} \frac{E}{\sqrt{E^{2}-\left|\Delta\left(\hat{\mathbf{k}}^{\prime}\right)\right|^{2}}} W^{(-)}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right) \frac{E}{\sqrt{E^{2}-|\Delta(\hat{\mathbf{k}})|^{2}}}$
Transverse force $\quad \eta_{x y}^{(-)}=-\eta_{y x}^{(-)} \equiv \eta_{\mathrm{AH}} \quad \Rightarrow \quad$ anomalous Hall effect

Theoretical Results for the Drag and Transverse Forces

- $\Delta p_{x} \approx p_{f} \quad \sigma_{x x}^{\mathrm{tr}} \approx \sigma_{N}^{\mathrm{tr}} \approx \pi R^{2}$
- $F_{x} \approx n v_{x} \Delta p_{x} \sigma_{x x}^{\mathrm{tr}}$

$$
\approx n v_{x} p_{f} \sigma_{N}^{\operatorname{tr}}
$$

$$
\left|F_{y} / F_{x}\right| \approx \frac{\hbar}{p_{f} R}\left(\Delta(T) / k_{B} T_{c}\right)^{2} \quad k_{f} R=11.17
$$

- $\Delta p_{y} \approx \hbar / R \quad \sigma_{x y}^{\mathrm{tr}} \approx\left(\Delta(T) / k_{\mathrm{B}} T_{c}\right)^{2} \sigma_{\mathrm{N}}^{\mathrm{tr}}$
- $F_{y} \approx n v_{x} \Delta p_{y} \sigma_{x y}^{\mathrm{tr}}$

$$
\approx n v_{x}(\hbar / R) \sigma_{\mathrm{N}}^{\mathrm{tr}}\left(\Delta(T) / k_{\mathrm{B}} T_{c}\right)^{2}
$$

Branch Conversion Scattering in a Chiral Condensate

Comparison between Theory and Experiment for the Drag and Transverse Forces

Anomalous Hall Effect of e^{-}in Suverfluid ${ }^{3} \mathrm{He}-\mathrm{A}$

Anomalous Hall Effect for Electron Transport in ${ }^{3} \mathrm{He}-\mathrm{A}$

Ikegami, Tsutsumi \& Kono, Science 341, 59 (2013)
O. Shevtsov \& J. A. Sauls, Phys. Rev. B, 94, 064511, (2016)

Vanishing of the Effective Magnetic Field for $T \rightarrow 0$

$$
B_{\mathrm{W}}=5.9 \times 10^{5} \mathrm{~T}\left(\frac{\eta_{x y}}{\eta_{\mathrm{N}}}\right)
$$

$$
\eta_{x y} /\left.\eta_{\mathrm{N}}\right|_{T=0.8 T_{c}} \approx \frac{\hbar}{p_{f} R}
$$

Breakdown of Laminar Flow

$$
\operatorname{Re} e_{N}=6.7 \times 10^{-6}
$$

Generation of a Turbulent Tangle of Quantized Vortices from the Chiral Vacuum

Breakdown of Scattering Theory for $T \rightarrow 0$

Electron Bubble Velocity

- $V_{\mathrm{N}}=\mu_{\mathrm{N}} E_{\mathrm{N}}=1.01 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
- $V=\mu_{\mathrm{N}} E_{\mathrm{N}} \sqrt{\frac{\eta_{\mathrm{N}}}{\eta}}$

Maximum Landau critical velocity

- $V_{c}^{\max } \approx 155 \times 10^{-4} \mathrm{~m} / \mathrm{s} \frac{\Delta_{\mathrm{A}}(T)}{k_{b} T_{c}}$

Nodal Superfluids:

- $V_{c}=\Delta(p) / p_{f} \rightarrow 0$ for $p \rightarrow p_{\text {node }}$
$\varepsilon_{\text {Doppler }}=P_{f} V$

Radiation of Weyl Fermions from the Chiral Vacuum

Radiation Damping - Pair-Breaking at $T \rightarrow 0$

Is their a transverse component of the radiation backaction?

\rightsquigarrow Asymmetry in the Radiation of Chiral Fermions from a Chiral Vacuum

