Topological Edge \& Surface States of Superfluid ${ }^{3} \mathrm{He}$

J. A. Sauls

Northwestern University

- Hao Wu (Northwestern) • Supported by NSF Grant DMR-1106315
- John Saunders (Royal Holloway) • Jeevak Parpia (Cornell)
- Topology of Superfluid ${ }^{3} \mathrm{He}-\mathrm{A}$
- Chiral Edge States in $2 \mathrm{D}^{3} \mathrm{He}-\mathrm{A}$
- Detecting Chiral Edge Fermions
- M. Stone, R. Roy, Phys. Rev. B 69, 184511 (2004)
- J. A. Sauls, Phys. Rev. B 84, 214509 (2011)
- ${ }^{3} \mathrm{He}-\mathrm{B}-3 \mathrm{D}$ Topological SF
- Helical Spin Current
- Signatures of Majorana Modes

$$
\text { Symmetry Group of Normal }{ }^{3} \mathrm{He}: \quad \mathrm{G}=\mathrm{SO}(3)_{\mathrm{S}} \times \mathrm{SO}(3)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{N}} \times \mathrm{P} \times \mathrm{T}
$$

Phase Diagram of Bulk ${ }^{3} \mathrm{He}$

$$
\text { Symmetry Group of Normal }{ }^{3} \mathrm{He}: \quad \mathrm{G}=\mathrm{SO}(3)_{\mathrm{S}} \times \mathrm{SO}(3)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{N}} \times \mathrm{P} \times \mathrm{T}
$$

Phase Diagram of Bulk ${ }^{3} \mathrm{He}$

Spin-Triplet, P-wave Order Parameter:

$$
\Delta_{\alpha \beta}(\mathbf{p})=\overrightarrow{\mathbf{d}}(\mathbf{p}) \cdot\left(i \overrightarrow{\boldsymbol{\sigma}} \sigma_{y}\right)_{\alpha \beta} \rightsquigarrow \mathbf{d}_{\mu}(\mathbf{p})=\mathcal{A}_{\mu i} \mathbf{p}_{i}
$$

Superfluid Phases of ${ }^{3} \mathrm{He}$

Symmetry Group of Normal ${ }^{3} \mathrm{He}: \quad \mathrm{G}=\mathrm{SO}(3)_{\mathrm{S}} \times \mathrm{SO}(3)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{N}} \times \mathrm{P} \times \mathrm{T}$

Phase Diagram of Bulk ${ }^{3} \mathrm{He}$

Chiral ABM State $\vec{l}=\hat{\mathrm{m}} \times \hat{\mathrm{n}}$

$$
\begin{gathered}
\mathcal{A}_{\mu i}=\Delta \hat{\mathbf{d}}_{\mu}(\hat{\mathbf{m}}+i \hat{\mathbf{n}})_{i} \\
L_{z}=1, S_{z}=0
\end{gathered}
$$

Spin-Triplet, P-wave Order Parameter:

$$
\Delta_{\alpha \beta}(\mathbf{p})=\overrightarrow{\mathbf{d}}(\mathbf{p}) \cdot\left(i \overrightarrow{\boldsymbol{\sigma}} \sigma_{y}\right)_{\alpha \beta} \rightsquigarrow \mathbf{d}_{\mu}(\mathbf{p})=\mathcal{A}_{\mu i} \mathbf{p}_{i}
$$

Superfluid Phases of ${ }^{3} \mathrm{He}$
Symmetry Group of Normal ${ }^{3} \mathrm{He}: \quad \mathrm{G}=\mathrm{SO}(3)_{\mathrm{S}} \times \mathrm{SO}(3)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{N}} \times \mathrm{P} \times \mathrm{T}$

Phase Diagram of Bulk ${ }^{3} \mathrm{He}$

Spin-Triplet, P-wave Order Parameter:
$\Delta_{\alpha \beta}(\mathbf{p})=\overrightarrow{\mathbf{d}}(\mathbf{p}) \cdot\left(i \overrightarrow{\boldsymbol{\sigma}} \sigma_{y}\right)_{\alpha \beta} \rightsquigarrow \mathbf{d}_{\mu}(\mathbf{p})=\mathcal{A}_{\mu i} \mathbf{p}_{i}$

Chiral ABM State $\vec{l}=\hat{\mathrm{m}} \times \hat{\mathrm{n}}$

$$
\mathcal{A}_{\mu i}=\Delta \hat{\mathbf{d}}_{\mu}(\hat{\mathbf{m}}+i \hat{\mathbf{n}})_{i}
$$

$$
L_{z}=1, S_{z}=0
$$

"Isotropic" BW State

$$
\begin{aligned}
& \mathcal{A}_{\mu i}=\Delta \delta_{\mu i} \\
& J=0, J_{z}=0
\end{aligned}
$$

Superfluid Phases of ${ }^{3} \mathrm{He}$ - Confined Geometry
Symmetry Group of Normal ${ }^{3} \mathrm{He}: \quad \mathrm{G}=\mathrm{SO}(3)_{\mathrm{S}} \times \mathrm{SO}(3)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{N}} \times \mathrm{P} \times \mathrm{T}$
A. Vorontsov \& JAS, PRL, 2007

Spin-Triplet, P-wave Order Parameter:
$\Delta_{\alpha \beta}(\mathbf{p})=\overrightarrow{\mathbf{d}}(\mathbf{p}) \cdot\left(i \overrightarrow{\boldsymbol{\sigma}} \sigma_{y}\right)_{\alpha \beta} \rightsquigarrow \mathbf{d}_{\mu}(\mathbf{p})=\mathcal{A}_{\mu i} \mathbf{p}_{i}$

Chiral ABM State $\vec{l}=\hat{\mathrm{m}} \times \hat{\mathrm{n}}$

$$
\begin{gathered}
\mathcal{A}_{\mu i}=\Delta \hat{\mathbf{d}}_{\mu}(\hat{\mathrm{m}}+i \hat{\mathrm{n}})_{i} \\
L_{z}=1, S_{z}=0
\end{gathered}
$$

"Isotropic" BW State

$$
\begin{gathered}
\mathcal{A}_{\mu i}=\Delta \delta_{\mu i} \\
J=0, J_{z}=0
\end{gathered}
$$

Ground-State Angular Momentum of Chiral P-wave Condensates

Ground-State for Chiral P-wave BEC Molecules or BCS Pairs Composed of N Fermion atoms:
$\left|\Phi_{N}\right\rangle=\left[\iint d \mathbf{r}_{1} d \mathbf{r}_{2} \varphi_{s_{1} s_{2}}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \psi_{s_{1}}^{\dagger}\left(\mathbf{r}_{1}\right) \psi_{s_{2}}^{\dagger}\left(\mathbf{r}_{2}\right)\right]^{N / 2}|\mathrm{vac}\rangle$
(1) $\varphi_{s_{1} s_{2}}(\mathbf{r})=f(|\mathbf{r}| / \xi)(x+i y) \chi_{s_{1} s_{2}}\left(S=1, M_{S}=0\right)$
(2) Radial size $\equiv \xi$: BEC $(\xi<a)$ vs. BCS pairs $(\xi>a)$

Ground-State Angular Momentum of Chiral P-wave Condensates

Ground-State for Chiral P-wave BEC Molecules or BCS Pairs Composed of N Fermion atoms:
$\left|\Phi_{N}\right\rangle=\left[\iint d \mathbf{r}_{1} d \mathbf{r}_{2} \varphi_{s_{1} s_{2}}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \psi_{s_{1}}^{\dagger}\left(\mathbf{r}_{1}\right) \psi_{s_{2}}^{\dagger}\left(\mathbf{r}_{2}\right)\right]^{N / 2}|\mathrm{vac}\rangle$
(1) $\varphi_{s_{1} s_{2}}(\mathbf{r})=f(|\mathbf{r}| / \xi)(x+i y) \chi_{s_{1} s_{2}}\left(S=1, M_{S}=0\right)$
(2) Radial size $\equiv \xi$: BEC $(\xi<a)$ vs. BCS pairs $(\xi>a)$
$L_{z}=(N / 2) \hbar$

Ground-State Angular Momentum of Chiral P-wave Condensates

Ground-State for Chiral P-wave BEC Molecules or BCS Pairs Composed of N Fermion atoms:
$\left|\Phi_{N}\right\rangle=\left[\iint d \mathbf{r}_{1} d \mathbf{r}_{2} \varphi_{s_{1} s_{2}}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \psi_{s_{1}}^{\dagger}\left(\mathbf{r}_{1}\right) \psi_{s_{2}}^{\dagger}\left(\mathbf{r}_{2}\right)\right]^{N / 2}|\mathrm{vac}\rangle$
(1) $\varphi_{s_{1} s_{2}}(\mathbf{r})=f(|\mathbf{r}| / \xi)(x+i y) \chi_{s_{1} s_{2}}\left(S=1, M_{S}=0\right)$
(2) Radial size $\equiv \xi$: BEC $(\xi<a)$ vs. BCS pairs $(\xi>a)$
$L_{z}=(N / 2) \hbar$

$L_{z}=(N / 2) \hbar(a / \xi)^{2} \ll(N / 2) \hbar$? (P. Morel \& P.W. Anderson, 1962, A. Leggett, 1975)

Ground-State Angular Momentum of Chiral P-wave Condensates

Ground-State for Chiral P-wave BEC Molecules or BCS Pairs Composed of N Fermion atoms:
$\left|\Phi_{N}\right\rangle=\left[\iint d \mathbf{r}_{1} d \mathbf{r}_{2} \varphi_{s_{1} s_{2}}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \psi_{s_{1}}^{\dagger}\left(\mathbf{r}_{1}\right) \psi_{s_{2}}^{\dagger}\left(\mathbf{r}_{2}\right)\right]^{N / 2} \mid$ vac \rangle
(1) $\varphi_{s_{1} s_{2}}(\mathbf{r})=f(|\mathbf{r}| / \xi)(x+i y) \chi_{s_{1} s_{2}}\left(S=1, M_{S}=0\right)$
(2) Radial size $\equiv \xi$: $\mathrm{BEC}(\xi<a)$ vs. BCS pairs $(\xi>a)$
$L_{z}=(N / 2) \hbar$

$L_{z}=(N / 2) \hbar(a / \xi)^{2} \ll(N / 2) \hbar$? (P. Morel \& P.W. Anderson, 1962, A. Leggett, 1975)

- $L_{z}\left|\Phi_{N}\right\rangle=(N / 2) \hbar\left|\Phi_{N}\right\rangle$ independent of (a / ξ) ! - McClure-Takagi (PRL, 1979)

Ground-State Angular Momentum of Chiral P-wave Condensates

Ground-State for Chiral P-wave BEC Molecules or BCS Pairs Composed of N Fermion atoms:
$\left|\Phi_{N}\right\rangle=\left[\iint d \mathbf{r}_{1} d \mathbf{r}_{2} \varphi_{s_{1} s_{2}}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \psi_{s_{1}}^{\dagger}\left(\mathbf{r}_{1}\right) \psi_{s_{2}}^{\dagger}\left(\mathbf{r}_{2}\right)\right]^{N / 2}|\mathrm{vac}\rangle$
(1) $\varphi_{s_{1} s_{2}}(\mathbf{r})=f(|\mathbf{r}| / \xi)(x+i y) \chi_{s_{1} s_{2}}\left(S=1, M_{S}=0\right)$
(2) Radial size $\equiv \xi$: $\mathrm{BEC}(\xi<a)$ vs. BCS pairs $(\xi>a)$
$L_{z}=(N / 2) \hbar$

$L_{z}=(N / 2) \hbar(a / \xi)^{2} \ll(N / 2) \hbar$? (P. Morel \& P.W. Anderson, 1962, A. Leggett, 1975)

- $L_{z}\left|\Phi_{N}\right\rangle=(N / 2) \hbar\left|\Phi_{N}\right\rangle$ independent of (a / ξ) ! - McClure-Takagi (PRL, 1979) Currents are confined on the Edge
${ }^{3} \mathrm{He}-\mathrm{A}$ confined in a cylindrical cavity with $h \ll \xi_{0}$ and $R \gg \xi_{0}$.

- 2D Chiral ABM State:

$$
\overrightarrow{\mathbf{d}}(\mathbf{p})=\Delta \hat{\mathbf{z}}\left(p_{x} \pm i p_{y}\right) / p_{f} \sim e^{ \pm i \varphi_{\mathbf{p}}}
$$

- Equal-Spin Pairs for all p:
$\hat{\mathbf{z}} \rightsquigarrow|\rightrightarrows\rangle+|\leftleftarrows\rangle$
- Fully Gapped: $|\overrightarrow{\mathbf{d}}(\mathbf{p})|^{2}=\Delta^{2}$

2D Chiral A-phase

${ }^{3} \mathrm{He}-\mathrm{A}$ confined in a cylindrical cavity with $h \ll \xi_{0}$ and $R \gg \xi_{0}$.

- 2D Chiral ABM State:

$$
\overrightarrow{\mathbf{d}}(\mathbf{p})=\Delta \hat{\mathbf{z}}\left(p_{x} \pm i p_{y}\right) / p_{f} \sim e^{ \pm i \varphi_{\mathbf{p}}}
$$

- Equal-Spin Pairs for all \mathbf{p} :
$\hat{\mathbf{z}} \rightsquigarrow|\rightrightarrows\rangle+|\leftleftarrows\rangle$
- Fully Gapped: $|\overrightarrow{\mathbf{d}}(\mathbf{p})|^{2}=\Delta^{2}$

Bogoliubov Equations for Fermionic Excitations:

$$
\begin{aligned}
& \left(-\frac{\hbar^{2}}{2 m} \nabla^{2}-\mu\right) u+\sigma_{x} \frac{\hbar}{i}\left(\Delta_{1} \frac{\partial}{\partial x}+i \Delta_{2} \frac{\partial}{\partial y}\right) v=\varepsilon u \\
& \left(+\frac{\hbar^{2}}{2 m} \nabla^{2}+\mu\right) v+\sigma_{x} \frac{\hbar}{i}\left(\Delta_{1} \frac{\partial}{\partial x}-i \Delta_{2} \frac{\partial}{\partial y}\right) u=\varepsilon v
\end{aligned}
$$

2D Chiral A-phase

${ }^{3} \mathrm{He}-\mathrm{A}$ confined in a cylindrical cavity with $h \ll \xi_{0}$ and $R \gg \xi_{0}$.

- 2D Chiral ABM State:

$$
\overrightarrow{\mathbf{d}}(\mathbf{p})=\Delta \hat{\mathbf{z}}\left(p_{x} \pm i p_{y}\right) / p_{f} \sim e^{ \pm i \varphi_{\mathbf{p}}}
$$

- Equal-Spin Pairs for all \mathbf{p} :

$$
\hat{\mathbf{z}} \rightsquigarrow|\rightrightarrows\rangle+|\leftleftarrows\rangle
$$

- Fully Gapped: $|\overrightarrow{\mathbf{d}}(\mathbf{p})|^{2}=\Delta^{2}$

Bogoliubov Equations for Fermionic Excitations:

$$
\begin{aligned}
& \left(-\frac{\hbar^{2}}{2 m} \nabla^{2}-\mu\right) u+\sigma_{x} \frac{\hbar}{i}\left(\Delta_{1} \frac{\partial}{\partial x}+i \Delta_{2} \frac{\partial}{\partial y}\right) v=\varepsilon u \\
& \left(+\frac{\hbar^{2}}{2 m} \nabla^{2}+\mu\right) v+\sigma_{x} \frac{\hbar}{i}\left(\Delta_{1} \frac{\partial}{\partial x}-i \Delta_{2} \frac{\partial}{\partial y}\right) u=\varepsilon v
\end{aligned}
$$

Nambu-Momentum Representation with particle-hole (iso-spin) matrices $\widehat{\overrightarrow{\boldsymbol{\tau}}}=\left(\widehat{\tau}_{1}, \widehat{\tau}_{2}, \widehat{\tau}_{3}\right)$

$$
\widehat{H}=\left(|\mathbf{p}|^{2} / 2 m-\mu\right) \widehat{\tau}_{3}+\sigma_{x}\left[\Delta_{1} p_{x} \widehat{\tau}_{1} \mp \Delta_{2} p_{y} \widehat{\tau}_{2}\right] / p_{f}=\overrightarrow{\mathbf{m}}(\mathbf{p}) \cdot \widehat{\overrightarrow{\boldsymbol{\tau}}}
$$

$$
\begin{gathered}
\text { Nambu-Bogoliubov Hamiltonian for 2D }{ }^{3} \mathrm{He}-\mathrm{A}: \widehat{H}=\overrightarrow{\mathbf{m}}(\mathbf{p}) \cdot \widehat{\vec{\tau}} \\
\rightsquigarrow \overrightarrow{\mathbf{m}}=\left(c p_{x}, \mp c p_{y}, \xi(\mathbf{p})\right) \text { with }|\overrightarrow{\mathbf{m}}(\mathbf{p})|^{2}=\left(|\mathbf{p}|^{2} / 2 m-\mu\right)^{2}+c^{2}|\mathbf{p}|^{2}>0, \mu \neq 0
\end{gathered}
$$

Topological Invariant for 2D ${ }^{3} \mathrm{He}-\mathrm{A}$ and Fermionic Spectrum
Nambu-Bogoliubov Hamiltonian for $2 \mathrm{D}{ }^{3} \mathrm{He}-\mathrm{A}: \widehat{H}=\overrightarrow{\mathbf{m}}(\mathbf{p}) \cdot \widehat{\boldsymbol{\tau}}$ $\rightsquigarrow \overrightarrow{\mathbf{m}}=\left(c p_{x}, \mp c p_{y}, \xi(\mathbf{p})\right)$ with $|\overrightarrow{\mathbf{m}}(\mathbf{p})|^{2}=\left(|\mathbf{p}|^{2} / 2 m-\mu\right)^{2}+c^{2}|\mathbf{p}|^{2}>0, \mu \neq 0$

Topological Invariant for $2 \mathrm{D}^{3} \mathrm{He}-\mathrm{A} \leftrightarrow$ QED in $\mathrm{d}=2+1$ [G.E. Volovik, JETP 1988]:

$$
N_{2 \mathrm{D}}=\pi \int \frac{d^{2} p}{(2 \pi)^{2}} \hat{\mathbf{m}}(\mathbf{p}) \cdot\left(\frac{\partial \hat{\mathbf{m}}}{\partial p_{x}} \times \frac{\partial \hat{\mathbf{m}}}{\partial p_{y}}\right)=\left\{\begin{array}{cc}
\pm 1 ; & \mu>0 \text { and } \Delta \neq 0 \\
0 ; & \mu<0 \text { or } \Delta=0
\end{array}\right.
$$

Topological Invariant for 2D ${ }^{3} \mathrm{He}-\mathrm{A}$ and Fermionic Spectrum
Nambu-Bogoliubov Hamiltonian for $2 \mathrm{D}{ }^{3} \mathrm{He}-\mathrm{A}: \widehat{H}=\overrightarrow{\mathbf{m}}(\mathbf{p}) \cdot \widehat{\boldsymbol{\tau}}$ $\rightsquigarrow \overrightarrow{\mathbf{m}}=\left(c p_{x}, \mp c p_{y}, \xi(\mathbf{p})\right)$ with $|\overrightarrow{\mathbf{m}}(\mathbf{p})|^{2}=\left(|\mathbf{p}|^{2} / 2 m-\mu\right)^{2}+c^{2}|\mathbf{p}|^{2}>0, \mu \neq 0$

Topological Invariant for 2D ${ }^{3} \mathrm{He}-\mathrm{A} \leftrightarrow$ QED in $\mathrm{d}=2+1$ [G.E. Volovik, JETP 1988]:

$$
N_{2 \mathrm{D}}=\pi \int \frac{d^{2} p}{(2 \pi)^{2}} \hat{\mathbf{m}}(\mathbf{p}) \cdot\left(\frac{\partial \hat{\mathbf{m}}}{\partial p_{x}} \times \frac{\partial \hat{\mathbf{m}}}{\partial p_{y}}\right)=\left\{\begin{array}{cc}
\pm 1 ; & \mu>0 \text { and } \Delta \neq 0 \\
0 ; & \mu<0 \text { or } \Delta=0
\end{array}\right.
$$

Chiral Edge Fermions in the $2 \mathrm{D}^{3} \mathrm{He}-\mathrm{A}$
Propagator for Edge Fermions: $g_{\text {edge }}^{\mathrm{R}}(\mathbf{p}, \varepsilon ; x)=\frac{\pi \Delta\left|\mathbf{p}_{x}\right|}{\varepsilon+i \gamma-\varepsilon_{\mathrm{bs}}\left(\mathbf{p}_{\| \mid}\right)} e^{-x / \xi_{\Delta}}$
Confinement on $\xi_{\Delta}=\hbar v_{f} / 2 \Delta \approx 10^{3} \stackrel{\circ}{A} \gg \hbar / p_{f}$

- $\varepsilon_{\mathrm{bs}}=-c p_{| |}$with $c=\Delta / p_{f} \ll v_{f}$ - Broken $\mathrm{P} \& \mathrm{~T} \rightsquigarrow$ Edge Current

Chiral Edge Fermions in the $2 \mathrm{D}^{3} \mathrm{He}-\mathrm{A}$
Propagator for Edge Fermions: $g_{\text {edge }}^{\mathrm{R}}(\mathbf{p}, \varepsilon ; x)=\frac{\pi \Delta\left|\mathbf{p}_{x}\right|}{\varepsilon+i \gamma-\varepsilon_{\mathrm{bs}}\left(\mathbf{p}_{\| \mid}\right)} e^{-x / \xi_{\Delta}}$
Confinement on $\xi_{\Delta}=\hbar v_{f} / 2 \Delta \approx 10^{3} \stackrel{\circ}{A} \gg \hbar / p_{f}$

- $\varepsilon_{\mathrm{bs}}=-c p_{| |}$with $c=\Delta / p_{f} \ll v_{f}$ - Broken $\mathrm{P} \& \mathrm{~T} \rightsquigarrow$ Edge Current

Chiral Edge Currents

Local Density of States: $N(\mathbf{p}, x ; \varepsilon)=-\frac{1}{\pi} \operatorname{Im} g^{\mathrm{R}}(\mathbf{p}, x ; \varepsilon)$

Chiral Edge Currents

Local Density of States: $N(\mathbf{p}, x ; \varepsilon)=-\frac{1}{\pi} \operatorname{Im} g^{\mathrm{R}}(\mathbf{p}, x ; \varepsilon)$
Pair Time-Reversed Trajectories
Spectral Current Density :

$$
\vec{J}(\mathbf{p}, x ; \varepsilon)=2 N_{f} \vec{v}(\mathbf{p})\left[N(\mathbf{p}, x ; \varepsilon)-N\left(\mathbf{p}^{\prime}, x ; \varepsilon\right)\right]
$$

Chiral Edge Currents

Local Density of States: $N(\mathbf{p}, x ; \varepsilon)=-\frac{1}{\pi} \operatorname{Im} g^{\mathrm{R}}(\mathbf{p}, x ; \varepsilon)$
Pair Time-Reversed Trajectories
Spectral Current Density :

$$
\vec{J}(\mathbf{p}, x ; \varepsilon)=2 N_{f} \vec{v}(\mathbf{p})\left[N(\mathbf{p}, x ; \varepsilon)-N\left(\mathbf{p}^{\prime}, x ; \varepsilon\right)\right]
$$

Bound-State Edge Current at $x=0$

Chiral Edge Currents

Local Density of States: $N(\mathbf{p}, x ; \varepsilon)=-\frac{1}{\pi} \operatorname{Im} g^{\mathrm{R}}(\mathbf{p}, x ; \varepsilon)$
Pair Time-Reversed Trajectories
Spectral Current Density :

$$
\vec{J}(\mathbf{p}, x ; \varepsilon)=2 N_{f} \vec{v}(\mathbf{p})\left[N(\mathbf{p}, x ; \varepsilon)-N\left(\mathbf{p}^{\prime}, x ; \varepsilon\right)\right]
$$

Bound-State Edge Current at $x=0$

Continuum Edge Current at $x=10 \xi_{0}$

Edge Currents and Angular Momentum

Ground-State Current Density: $\vec{J}(x)=\int_{-1}^{+1} \frac{d p_{\|}}{p_{f}} \int_{-\infty}^{0} \vec{J}(\mathbf{p}, x ; \varepsilon)$

Edge Currents and Angular Momentum
Ground-State Current Density: $\vec{J}(x)=\int_{-1}^{+1} \frac{d p_{\|}}{p_{f}} \int_{-\infty}^{0} \vec{J}(\mathbf{p}, x ; \varepsilon)$

Edge Currents and Angular Momentum

Ground-State Current Density: $\vec{J}(x)=\int_{-1}^{+1} \frac{d p_{\|}}{p_{f}} \int_{-\infty}^{0} \vec{J}(\mathbf{p}, x ; \varepsilon)$

Bound-State Contribution $\left(R \gg \xi_{\Delta}\right)$:

$$
\begin{aligned}
J_{\varphi}(\mathbf{p}, x ; \varepsilon) & =2 N_{f} v_{f} \Delta\left|p_{x}\right| p_{\varphi} e^{-x / \xi_{\Delta}} \\
& \times\left[\delta\left(\varepsilon-\varepsilon_{\text {bs }}\left(\mathbf{p}_{\|}\right)\right)-\delta\left(\varepsilon-\varepsilon_{\mathrm{bs}}\left(\mathbf{p}_{\|}^{\prime}\right)\right)\right]
\end{aligned}
$$

Edge Currents and Angular Momentum

Bound-State Contribution $\left(R \gg \xi_{\Delta}\right)$:

$$
\begin{aligned}
J_{\varphi}(\mathbf{p}, x ; \varepsilon) & =2 N_{f} v_{f} \Delta\left|p_{x}\right| p_{\varphi} e^{-x / \xi_{\Delta}} \\
& \times\left[\delta\left(\varepsilon-\varepsilon_{\mathrm{bs}}\left(\mathbf{p}_{\|}\right)\right)-\delta\left(\varepsilon-\varepsilon_{\mathrm{bs}}\left(\mathbf{p}_{\|}^{\prime}\right)\right)\right]
\end{aligned}
$$

Bound-State Edge Current: $\int_{0}^{\infty} d x J_{\varphi}(x)=\frac{1}{2} n \hbar$

Edge Currents and Angular Momentum

Edge Currents and Angular Momentum

Edge Currents and Angular Momentum

Edge Currents and Angular Momentum

Ground-State Current Density: $\vec{J}(x)=\int_{-1}^{+1} \frac{d p_{\|}}{p_{f}} \int_{-\infty}^{0} \vec{J}(\mathbf{p}, x ; \varepsilon)$

Bound-State Contribution $\left(R \gg \xi_{\Delta}\right)$:

$$
\begin{aligned}
J_{\varphi}(\mathbf{p}, x ; \varepsilon) & =2 N_{f} v_{f} \Delta\left|p_{x}\right| p_{\varphi} e^{-x / \xi_{\Delta}} \\
& \times\left[\delta\left(\varepsilon-\varepsilon_{\mathrm{bs}}\left(\mathbf{p}_{\|}\right)\right)-\delta\left(\varepsilon-\varepsilon_{\mathrm{bs}}\left(\mathbf{p}_{\|}^{\prime}\right)\right)\right]
\end{aligned}
$$

Bound-State Edge Current: $\int_{0}^{\infty} d x J_{\varphi}(x)=\frac{1}{2} n \hbar$
Mass Current: $v_{f} \rightarrow p_{f} \rightsquigarrow \vec{J} \rightarrow \vec{g}$
$\triangleright L_{z}^{\mathrm{bs}}=\int_{V} d^{2} r\left[r g_{\varphi}(\mathbf{r})\right]=N \hbar \times 2$ Too Large vs. MT
\rightarrow Continuum $(\varepsilon<-\Delta): J_{\varphi}^{\mathrm{C}}=2 N_{f} v_{f}\left|p_{x}\right|\left(\frac{\Delta^{2} p_{\varphi}^{2}}{\varepsilon^{2}-\varepsilon_{\mathrm{bs}}^{2}\left(\mathbf{p}_{\|}\right)}\right) \sin \left(2 \sqrt{\varepsilon^{2}-\Delta^{2}} x / v_{x}\right)$

Edge Currents and Angular Momentum

Ground-State Current Density: $\vec{J}(x)=\int_{-1}^{+1} \frac{d p_{\|}}{p_{f}} \int_{-\infty}^{0} \vec{J}(\mathbf{p}, x ; \varepsilon)$

Bound-State Contribution $\left(R \gg \xi_{\Delta}\right)$:

$$
\begin{aligned}
J_{\varphi}(\mathbf{p}, x ; \varepsilon) & =2 N_{f} v_{f} \Delta\left|p_{x}\right| p_{\varphi} e^{-x / \xi_{\Delta}} \\
& \times\left[\delta\left(\varepsilon-\varepsilon_{\mathrm{bs}}\left(\mathbf{p}_{\| \mid}\right)\right)-\delta\left(\varepsilon-\varepsilon_{\mathrm{bs}}\left(\mathbf{p}_{\|}^{\prime}\right)\right)\right]
\end{aligned}
$$

Bound-State Edge Current: $\int_{0}^{\infty} d x J_{\varphi}(x)=\frac{1}{2} n \hbar$
Mass Current: $v_{f} \rightarrow p_{f} \rightsquigarrow \vec{J} \rightarrow \vec{g}$
$\triangleright L_{z}^{\mathrm{bs}}=\int_{V} d^{2} r\left[r g_{\varphi}(\mathbf{r})\right]=N \hbar \times 2$ Too Large vs. MT
\rightarrow Continuum $(\varepsilon<-\Delta): J_{\varphi}^{\mathrm{C}}=2 N_{f} v_{f}\left|p_{x}\right|\left(\frac{\Delta^{2} p_{\varphi}^{2}}{\varepsilon^{2}-\varepsilon_{\mathrm{bs}}^{2}\left(\mathbf{p}_{\|}\right)}\right) \sin \left(2 \sqrt{\varepsilon^{2}-\Delta^{2}} x / v_{x}\right)$
$-L_{z}^{\mathrm{C}}=\int_{V} d^{2} r\left[r g_{\varphi}^{\mathrm{C}}(\mathbf{r})\right]=-\frac{1}{2} N \hbar \rightsquigarrow L_{z}^{\mathrm{total}}=(N / 2) \hbar-$ MT Result Recovered!

Ground-State Angular Momentum of ${ }^{3} \mathrm{He}-\mathrm{A}$ in a Toroidal Geometry

${ }^{3} \mathrm{He}-\mathrm{A}$ confined in a toroidal cavity

- $R_{1}, R_{2}, R_{1}-R_{2} \gg \xi_{0}$
- Volume: $V=h \pi\left(R_{1}^{2}-R_{2}^{2}\right)$

${ }^{3} \mathrm{He}$-A confined in a toroidal cavity

- $R_{1}, R_{2}, R_{1}-R_{2} \gg \xi_{0}$
- Volume: $V=h \pi\left(R_{1}^{2}-R_{2}^{2}\right)$
- Sheet Current: $J=\frac{1}{4} n \hbar$ ($n=N / V={ }^{3} \mathrm{He}$ density)

${ }^{3} \mathrm{He}-\mathrm{A}$ confined in a toroidal cavity

- $R_{1}, R_{2}, R_{1}-R_{2} \gg \xi_{0}$
- Volume: $V=h \pi\left(R_{1}^{2}-R_{2}^{2}\right)$
- Sheet Current: $J=\frac{1}{4} n \hbar$ ($n=N / V={ }^{3} \mathrm{He}$ density)
- Counter-propagating Edge Currents: $J_{1}=-J_{2}=\frac{1}{4} n \hbar$

${ }^{3} \mathrm{He}$-A confined in a toroidal cavity

- $R_{1}, R_{2}, R_{1}-R_{2} \gg \xi_{0}$
- Volume: $V=h \pi\left(R_{1}^{2}-R_{2}^{2}\right)$
- Sheet Current: $J=\frac{1}{4} n \hbar$ ($n=N / V={ }^{3} \mathrm{He}$ density)
- Counter-propagating Edge Currents: $J_{1}=-J_{2}=\frac{1}{4} n \hbar$
- Angular Momentum:

$$
L_{z}=2 \pi h\left(R_{1}^{2}-R_{2}^{2}\right) \times \frac{1}{4} n \hbar=(N / 2) \hbar
$$

Thermal Excitation of Chiral Edge Fermions

 Thermally Excited Edge Fermions Carry the Opposite Current

Angular Momentum of ${ }^{3} \mathrm{He}-\mathrm{A}$ vs. Temperature

$$
L_{z}=(N / 2) \hbar \times \mathcal{Y}_{L_{z}}(T) \quad \mathcal{Y}_{L_{z}}(T) \approx 1-c(T / \Delta)^{2}, \quad T \ll \Delta
$$

Edge Currents are Protected by Symmetry, not Topology

Specular Reflection

Robustness of Edge Currents vs Edge States

Edge Currents are Protected by Symmetry, not Topology

Specular Reflection

Propagating Chiral Fermions:

$$
\begin{gathered}
g^{\mathrm{R}}(\mathbf{p}, \varepsilon ; x)=\frac{\pi \Delta\left|\mathbf{p}_{x}\right|}{\varepsilon+i \gamma-\varepsilon_{\mathrm{bs}}\left(\mathbf{p}_{\|}\right)} e^{-x / \xi_{\Delta}} \\
\text { Edge Current: } J=\frac{1}{4} n \hbar
\end{gathered}
$$

Edge Currents are Protected by Symmetry, not Topology

Specular Reflection

Propagating Chiral Fermions:

$$
\begin{gathered}
g^{\mathrm{R}}(\mathbf{p}, \varepsilon ; x)=\frac{\pi \Delta\left|\mathbf{p}_{x}\right|}{\varepsilon+i \gamma-\varepsilon_{\mathrm{bs}}\left(\mathbf{p}_{\|}\right)} e^{-x / \xi_{\Delta}} \\
\text { Edge Current: } J=\frac{1}{4} n \hbar
\end{gathered}
$$

Edge Currents are Protected by Symmetry, not Topology

Specular Reflection

Propagating Chiral Fermions:

$$
\begin{gathered}
g^{\mathrm{R}}(\mathbf{p}, \varepsilon ; x)=\frac{\pi \Delta\left|\mathbf{p}_{x}\right|}{\varepsilon+i \gamma-\varepsilon_{\mathrm{bs}}\left(\mathbf{p}_{\|}\right)} e^{-x / \xi_{\Delta}} \\
\text { Edge Current: } J=\frac{1}{4} n \hbar
\end{gathered}
$$

Edge Currents are Protected by Symmetry, not Topology

Specular Reflection

Propagating Chiral Fermions:

$$
g^{\mathrm{R}}(\mathbf{p}, \varepsilon ; x)=\frac{\pi \Delta\left|\mathbf{p}_{x}\right|}{\varepsilon+i \gamma-\varepsilon_{\mathrm{bs}}\left(\mathbf{p}_{\|}\right)} e^{-x / \xi_{\Delta}}
$$

Edge Current: $J=\frac{1}{4} n \hbar$

Retro Reflection

Zero-Energy Fermions for all p:

$$
g^{\mathrm{R}}(\mathbf{p}, \varepsilon ; x)=\frac{\pi \Delta}{\varepsilon+i \gamma} e^{-2 \Delta x / v_{x}}
$$

Non-Chiral \rightsquigarrow Edge Current: $J=0$

Engineered Edges of a Toroidal Cavity

- Sheet Current: $J=f \times \frac{1}{4} n \hbar$
- Non-Specular Surfaces

$$
0 \leq f \leq 1
$$

Engineered Edges of a Toroidal Cavity

- Sheet Current: $J=f \times \frac{1}{4} n \hbar$
- Non-Specular Surfaces

$$
0 \leq f \leq 1
$$

Incomplete Screening of Counter-Propagating Currents

$$
L_{z}=(N / 2) \hbar \times\left(\frac{f_{1}-r f_{2}}{1-r}\right)
$$

Non-Extensive Scaling of $L_{z}: r=\left(R_{2} / R_{1}\right)^{2} \quad 0<r<1$

Non-Extensive Scaling of L_{z} in a Toroidal Geometry

Engineered Edges of a Toroidal Cavity

- Sheet Current: $J=f \times \frac{1}{4} n \hbar$
- Non-Specular Surfaces

$$
0 \leq f \leq 1
$$

Incomplete Screening of Counter-Propagating Currents

$$
L_{z}=(N / 2) \hbar \times\left(\frac{f_{1}-r f_{2}}{1-r}\right)
$$

Non-Extensive Scaling of $L_{z}: r=\left(R_{2} / R_{1}\right)^{2} \quad 0<r<1$

- $f_{1}=1, f_{2}=0$
$L_{z}=(N / 2) \hbar \times\left(\frac{1}{1-r}\right) \gg(N / 2) \hbar$

Non-Extensive Scaling of L_{z} in a Toroidal Geometry

Engineered Edges of a Toroidal Cavity

- Sheet Current: $J=f \times \frac{1}{4} n \hbar$
- Non-Specular Surfaces

$$
0 \leq f \leq 1
$$

Incomplete Screening of Counter-Propagating Currents

$$
L_{z}=(N / 2) \hbar \times\left(\frac{f_{1}-r f_{2}}{1-r}\right)
$$

Non-Extensive Scaling of $L_{z}: r=\left(R_{2} / R_{1}\right)^{2} \quad 0<r<1$

- $f_{1}=1, f_{2}=0$
$L_{z}=(N / 2) \hbar \times\left(\frac{1}{1-r}\right) \gg(N / 2) \hbar \quad L_{z}=(N / 2) \hbar \times\left(\frac{-r}{1-r}\right) \ll-(N / 2) \hbar$
- Strong violations of the McClure-Takagi Result

Detecting Chiral Edge Fermions in ${ }^{3} \mathrm{He}-\mathrm{A}$

Gyroscopic Experiment to Measure of $L_{z}(T)$

Detection of Broken Time-Reversal Symmetry of Cooper pairs in Superfluid ${ }^{3} \mathrm{He}-\mathrm{A}$

 Hiroki Ikegami, Yasumasa Tsutsumi, Kimitoshi Kono, Science 341, 59-62 (2013)RIKEN, Japan

Electron Mobility:

$$
\vec{v}=\widehat{\mu} \cdot \vec{E}
$$

Detection of Broken Time-Reversal Symmetry of Cooper pairs in Superfluid ${ }^{3} \mathrm{He}-\mathrm{A}$

 Hiroki Ikegami, Yasumasa Tsutsumi, Kimitoshi Kono, Science 341, 59-62 (2013)RIKEN, Japan

Electron Mobility:
B-phase Mobility

$$
\vec{v}=\widehat{\mu} \cdot \vec{E} \quad \widehat{\mu}=\mu\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Isotropic
Fully Gapped

Detection of Broken Time-Reversal Symmetry of Cooper pairs in Superfluid ${ }^{3} \mathrm{He}-\mathrm{A}$

 Hiroki Ikegami, Yasumasa Tsutsumi, Kimitoshi Kono, Science 341, 59-62 (2013)

Electron Mobility:

$$
\vec{v}=\widehat{\mu} \cdot \vec{E} \quad \begin{gathered}
\widehat{\mu}=\mu\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\text { Isotropic } \\
\text { Fully Gapped }
\end{gathered}
$$

A-phase Mobility
$\widehat{\mu}=\left(\begin{array}{ccc}\mu_{\perp} & \mu_{x y} & 0 \\ -\mu_{x y} & \mu_{\perp} & 0 \\ 0 & 0 & \mu_{\|}\end{array}\right)$
Anisotropic
Transverse Force

Detection of Broken Time-Reversal Symmetry in ${ }^{3} \mathrm{He}-\mathrm{A}$
$\vec{\ell}=+\hat{\mathbf{z}} \quad$ Structure of an Ion embedded in ${ }^{3} \mathrm{He}-\mathrm{A}$

$$
\hbar / p_{f} \ll R \lesssim \xi_{0} \quad \text { JAS \& M. Eschrig, New J. Phys. I I, } 075008 \text { (2009) }
$$

$$
\left(p_{x}+i p_{y}\right)
$$

Detection of Broken Time-Reversal Symmetry in ${ }^{3} \mathrm{He}-\mathrm{A}$

$\vec{\ell}=+\hat{\mathbf{z}} \quad$ Structure of an Ion embedded in ${ }^{3} \mathrm{He}-\mathrm{A}$

$$
\hbar / p_{f} \ll R \lesssim \xi_{0}
$$

JAS \& M. Eschrig, New J. Phys. II, 075008 (2009)

$$
\begin{array}{cc}
\left(p_{x}+i p_{y}\right) & \left(p_{x}-i p_{y}\right) \\
\text { e}^{-} \\
\text {uble } & \Delta_{+}
\end{array} \Delta_{-}(r) e^{+i 2 \phi} .
$$

$$
8
$$

Detection of Broken Time-Reversal Symmetry in ${ }^{3} \mathrm{He}-\mathrm{A}$

$\vec{\ell}=+\hat{\mathbf{z}} \quad$ Structure of an Ion embedded in ${ }^{3} \mathrm{He}-\mathrm{A}$

$$
\hbar / p_{f} \ll R \lesssim \xi_{0} .
$$

JAS \& M. Eschrig, New J. Phys. II, 075008 (2009)

$$
\left(p_{x}+i p_{y}\right) \quad\left(p_{x}-i p_{y}\right)
$$

$\Delta_{-}(r) e^{+i 2 \phi}$
Chiral
Currents

Detection of Broken Time-Reversal Symmetry in ${ }^{3} \mathrm{He}-\mathrm{A}$

$\vec{\ell}=+\hat{\mathbf{z}} \quad$ Structure of an Ion embedded in ${ }^{3} \mathrm{He}-\mathrm{A}$

$$
\hbar / p_{f} \ll R \lesssim \xi_{0} .
$$

JAS \& M. Eschrig, New J. Phys. II, 075008 (2009)

$$
\left(p_{x}+i p_{y}\right) \quad\left(p_{x}-i p_{y}\right)
$$

$\Delta-(r) e^{+i 2 \phi}$
Chiral
Currents

Detection of Broken Time-Reversal Symmetry in ${ }^{3} \mathrm{He}-\mathrm{A}$

$\vec{\ell}=+\hat{\mathbf{z}} \quad$ Structure of an Ion embedded in ${ }^{3} \mathrm{He}-\mathrm{A}$

$$
\hbar / p_{f} \ll R \lesssim \xi_{0} .
$$

JAS \& M. Eschrig, New J. Phys. II, 075008 (2009)

$$
\left(p_{x}+i p_{y}\right) \quad\left(p_{x}-i p_{y}\right)
$$

$\Delta_{-}(r) e^{+i 2 \phi}$
Chiral

Detection of Broken Time-Reversal Symmetry in ${ }^{3} \mathrm{He}-\mathrm{A}$

$\vec{\ell}=+\hat{\mathbf{z}} \quad$ Structure of an Ion embedded in ${ }^{3} \mathrm{He}-\mathrm{A}$

$$
\hbar / p_{f} \ll R \lesssim \xi_{0} .
$$

JAS \& M. Eschrig, New J. Phys. II, 075008 (2009)

$$
\left(p_{x}+i p_{y}\right) \quad\left(p_{x}-i p_{y}\right)
$$

$\Delta_{-}(r) e^{+i 2 \phi}$
Chiral

Detection of Broken Time-Reversal Symmetry in ${ }^{3} \mathrm{He}-\mathrm{A}$

$\vec{\ell}=+\hat{\mathbf{z}} \quad$ Structure of an Ion embedded in ${ }^{3} \mathrm{He}-\mathrm{A}$

$$
\hbar / p_{f} \ll R \lesssim \xi_{0} .
$$

JAS \& M. Eschrig, New J. Phys. II, 075008 (2009)

$$
\left(p_{x}+i p_{y}\right) \quad\left(p_{x}-i p_{y}\right)
$$

$\Delta_{-}(r) e^{+i 2 \phi}$
Chiral

Detection of Broken Time-Reversal Symmetry in ${ }^{3} \mathrm{He}-\mathrm{A}$

$\vec{\ell}=+\hat{\mathbf{z}} \quad$ Structure of an Ion embedded in ${ }^{3} \mathrm{He}-\mathrm{A}$

$$
\hbar / p_{f} \ll R \lesssim \xi_{0} \ldots \quad \text { JAS \& M. Eschrig, New J. Phys. II, } 075008 \text { (2009) }
$$

$$
\left(p_{x}+i p_{y}\right) \quad\left(p_{x}-i p_{y}\right)
$$

$\Delta-(r) e^{+i 2 \phi}$

Skew Scattering

Detection of Broken Time-Reversal Symmetry in ${ }^{3} \mathrm{He}-\mathrm{A}$
$\vec{\ell}=+\hat{\mathbf{z}} \quad$ Structure of an Ion embedded in ${ }^{3} \mathrm{He}-\mathrm{A}$

$$
\hbar / p_{f} \ll R \lesssim \xi_{0} \quad \because \text { jAs \& M. Eschrig New J. Phys. II, O75008 (2009) }
$$

$$
\left(p_{x}+i p_{y}\right) \quad\left(p_{x}-i p_{y}\right)
$$

Skew Scattering

$$
\begin{aligned}
& R \approx \AA \Rightarrow \text { M. Vuorio and D. Rainer, J. Phys. C Sol. State } 103093(1977) \\
& e\left(\mu^{-1}\right)_{i j}=n p_{f} \int \frac{d \Omega_{p}}{4 \pi} \int \frac{d \Omega_{p^{\prime}}}{4 \pi} \int_{-\infty}^{+\infty} d E\left(-\frac{\partial f}{\partial E}\right)(\Delta \hat{p})_{i}(\Delta \hat{p})_{j} \frac{\partial \sigma\left(\hat{p}, \hat{p}^{\prime}, E\right)}{\partial \Omega_{p^{\prime}}} \\
& \vec{v}=\left[\mu_{\|}(\hat{\ell} \cdot \vec{E}) \hat{\ell}+\mu_{\perp} \hat{\ell} \times(\hat{\ell} \times \vec{E})+\mu_{x y} \hat{\ell} \times \vec{E}\right] \quad \hat{\imath} \text { uniform }
\end{aligned}
$$

R. Salmelin, M. Salomaa, V. Mineev, Phys. Rev. Lett. 63, 868 (1989)

Mobility of electron bubbles in superfluid ${ }^{3} \mathrm{He}-\mathrm{B}$

Measurement of the Transverse e^{-}mobility in Superfluid ${ }^{3} \mathrm{He}$ Films

Measurement of the Transverse e^{-}mobility in Superfluid ${ }^{3} \mathrm{He}$ Films

Transverse Force from Skew Scattering

$$
\begin{gathered}
\leadsto \Delta I=I_{R}-I_{L} \neq 0 \\
\vec{v}=\left[\mu_{\perp} \vec{E}+\mu_{x y} \hat{\ell} \times \vec{E}\right] \quad \stackrel{\uparrow}{\ell}=+\hat{\mathbf{z}} \\
\downarrow \vec{\ell}=-\hat{\mathbf{z}}
\end{gathered}
$$

H. Ikegami, Y. Tsutsumi, K. Kono, Science 341, 59-62 (2013)

Transverse Current in ${ }^{\mathbf{3}} \mathbf{H e}-\mathbf{A}$
 $\Delta I=I_{R}-I_{L}$

$\Delta I^{i m}$

Single Domains:

$\operatorname{Run} 1 \quad \vec{\ell}=+\hat{\mathbf{Z}}$
$\operatorname{Run} 2 \quad \vec{\ell}=-\hat{\mathbf{Z}}$

$$
\frac{\left|I_{R}-I_{L}\right|}{I_{R}+I_{L}} \approx 6 \%
$$

H. Ikegami, Y. Tsutsumi, K. Kono, Science 341, 59-62 (2013)

Zero Transverse Current in ${ }^{3} \mathrm{He}-\mathrm{B}$ (T - symmetric phase)

H. Ikegami, Y. Tsutsumi, K. Kono, Science 341, 59-62 (2013)

Detection of Broken Time-Reversal Symmetry in ${ }^{3} \mathrm{He}-\mathrm{A}$

Zero Transverse Current in ${ }^{\mathbf{3}} \mathrm{He}-\mathrm{B}$ (T - symmetric phase)

H. Ikegami, Y. Tsutsumi, K. Kono, Science 341, 59-62 (2013)

Summary

- Phase Diagram of ${ }^{3} \mathrm{He}$ Films
- Topology of Superfluid ${ }^{3} \mathrm{He}-\mathrm{A}$
- Chiral Edge States in 2D ${ }^{3} \mathrm{He}-\mathrm{A}$
- Edge Currents and $\mathrm{L}_{z}(T)-L_{z}(0) \sim-T^{2}: R \gg \xi_{0}$
- Edge Currents \leftrightarrow Non-Extensive L_{z}
- Detection of Chiral Currents via e^{-}Mobility
- ${ }^{3} \mathrm{He}-\mathrm{B}$ - 3D Topological SF
- Helical Spin Current
- Symmetry Protected Majorana Modes
- Signatures of the Majorana Spectrum

Superfluid Phases of ${ }^{3} \mathrm{He}$ - Confined Geometry
Symmetry Group of Normal ${ }^{3} \mathrm{He}: \quad \mathrm{G}=\mathrm{SO}(3)_{\mathrm{S}} \times \mathrm{SO}(3)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{N}} \times \mathrm{P} \times \mathrm{T}$
A. Vorontsov \& JAS, PRL, 2007

Spin-Triplet, P-wave Order Parameter:
$\Delta_{\alpha \beta}(\mathbf{p})=\overrightarrow{\mathbf{d}}(\mathbf{p}) \cdot\left(i \overrightarrow{\boldsymbol{\sigma}} \sigma_{y}\right)_{\alpha \beta} \rightsquigarrow \mathbf{d}_{\mu}(\mathbf{p})=\mathcal{A}_{\mu i} \mathbf{p}_{i}$

Chiral ABM State $\vec{l}=\hat{\mathrm{m}} \times \hat{\mathrm{n}}$

$$
\begin{gathered}
\mathcal{A}_{\mu i}=\Delta \hat{\mathbf{d}}_{\mu}(\hat{\mathrm{m}}+i \hat{\mathrm{n}})_{i} \\
L_{z}=1, S_{z}=0
\end{gathered}
$$

"Isotropic" BW State

$$
\begin{gathered}
\mathcal{A}_{\mu i}=\Delta \delta_{\mu i} \\
J=0, J_{z}=0
\end{gathered}
$$

Confined Superfluid ${ }^{3} \mathrm{He}-\mathrm{B}$

$\hat{\Delta}=\overrightarrow{\mathbf{d}}(\mathbf{p}) \cdot\left(i \overrightarrow{\boldsymbol{\sigma}} \sigma_{y}\right)$

$$
\begin{aligned}
d_{x} & =\Delta_{\|}(z) p_{x}, \\
d_{y} & =\Delta_{\|}(z) p_{y}, \\
d_{z} & =\Delta_{\perp}(z) p_{z},
\end{aligned}
$$

A. Vorontsov and JAS, PRB 68, 064508 (2003)

Residual Symmetry: $\mathrm{G}_{\mathrm{B}}=\mathrm{SO}(2)_{\mathrm{L}_{z}+\mathrm{S}_{\mathrm{z}}} \times \mathrm{Z}_{2}^{\mathrm{L}+\mathrm{S}} \times \mathrm{T}$

Topological Invariant for 3D Time-Reversal Invariant ${ }^{3} \mathrm{He}-\mathrm{B}$
Nambu-Bogoliubov Hamiltonian for Bulk ${ }^{3} \mathrm{He}-\mathrm{B}$:

$$
\widehat{H}_{\mathrm{B}}=\xi(\mathbf{p}) \hat{\tau}_{3}+c \mathbf{p} \cdot \overrightarrow{\boldsymbol{\sigma}} \hat{\tau}_{1}
$$

(1) "Relativistic" Fermions: $E(\mathbf{p})=\sqrt{\xi(\mathbf{p})^{2}+c^{2}|\mathbf{p}|^{2}}$
(2) "light" speed: $c=\Delta / p_{f} \ll v_{f}$
(3) Emergent spin-orbit coupling \rightsquigarrow Helicity eigenstates

Topological Invariant for 3D Time-Reversal Invariant ${ }^{3} \mathrm{He}-\mathrm{B}$
Nambu-Bogoliubov Hamiltonian for Bulk ${ }^{3} \mathrm{He}-\mathrm{B}$:

$$
\widehat{H}_{\mathrm{B}}=\xi(\mathbf{p}) \hat{\tau}_{3}+c \mathbf{p} \cdot \overrightarrow{\boldsymbol{\sigma}} \hat{\tau}_{1}
$$

(1) "Relativistic" Fermions: $E(\mathbf{p})=\sqrt{\xi(\mathbf{p})^{2}+c^{2}|\mathbf{p}|^{2}}$
(2) "light" speed: $c=\Delta / p_{f} \ll v_{f}$
(3) Emergent spin-orbit coupling \rightsquigarrow Helicity eigenstates

- Topological Invariant for $3 \mathrm{D}{ }^{3} \mathrm{He}-\mathrm{B}$ protected by $\Gamma=\mathrm{CT}$ symmetry: $\Gamma \widehat{H}_{\mathrm{B}} \Gamma^{\dagger}=-\widehat{H}_{\mathrm{B}}$

Schnyder et al., PRB 78, 195125 (2008); Volovik, JETP Lett. 90, 587 (2009)
$N_{3 \mathrm{D}}=\frac{\pi}{4} \int \frac{d^{3} p}{(2 \pi)^{3}} \epsilon_{i j k} \operatorname{Tr}\left\{\Gamma\left(\widehat{H}_{\mathrm{B}}^{-1} \partial_{p_{i}} \widehat{H}_{\mathrm{B}}\right)\left(\widehat{H}_{\mathrm{B}}^{-1} \partial_{p_{j}} \widehat{H}_{\mathrm{B}}\right)\left(\widehat{H}_{\mathrm{B}}^{-1} \partial_{p_{k}} \widehat{H}_{\mathrm{B}}\right)\right\}= \begin{cases}0, & \Gamma=1 \\ 2, & \Gamma=\mathrm{CT}\end{cases}$
Zero Energy Fermions Confined on a 2D Surface \uparrow

Topological Invariant for 3D Time-Reversal Invariant ${ }^{3} \mathrm{He}-\mathrm{B}$

Nambu-Bogoliubov Hamiltonian for Bulk ${ }^{3} \mathrm{He}-\mathrm{B}$:

$$
\widehat{H}_{\mathrm{B}}=\xi(\mathbf{p}) \hat{\tau}_{3}+c \mathbf{p} \cdot \overrightarrow{\boldsymbol{\sigma}} \hat{\tau}_{1}
$$

(1) "Relativistic" Fermions: $E(\mathbf{p})=\sqrt{\xi(\mathbf{p})^{2}+c^{2}|\mathbf{p}|^{2}}$
(2) "light" speed: $c=\Delta / p_{f} \ll v_{f}$
(3) Emergent spin-orbit coupling \rightsquigarrow Helicity eigenstates

- Topological Invariant for $3 \mathrm{D}{ }^{3} \mathrm{He}-\mathrm{B}$ protected by $\Gamma=\mathrm{CT}$ symmetry: $\Gamma \widehat{H}_{\mathrm{B}} \Gamma^{\dagger}=-\widehat{H}_{\mathrm{B}}$

Schnyder et al., PRB 78, 195125 (2008); Volovik, JETP Lett. 90, 587 (2009)
$N_{3 \mathrm{D}}=\frac{\pi}{4} \int \frac{d^{3} p}{(2 \pi)^{3}} \epsilon_{i j k} \operatorname{Tr}\left\{\Gamma\left(\widehat{H}_{\mathrm{B}}^{-1} \partial_{p_{i}} \widehat{H}_{\mathrm{B}}\right)\left(\widehat{H}_{\mathrm{B}}^{-1} \partial_{p_{j}} \widehat{H}_{\mathrm{B}}\right)\left(\widehat{H}_{\mathrm{B}}^{-1} \partial_{p_{k}} \widehat{H}_{\mathrm{B}}\right)\right\}= \begin{cases}0, & \Gamma=1 \\ 2, & \Gamma=\mathrm{CT}\end{cases}$
Zero Energy Fermions Confined on a 2D Surface \uparrow
${ }^{3} \mathrm{He}-\mathrm{B}$ is a topological phase for restricted external T-symmetry breaking! :

$$
\mathrm{T} \rightarrow \mathrm{~T} \times \mathrm{U}(\pi) \mathrm{L}_{z}+\mathrm{S}_{z}
$$

T. Mizushima, PRB 86 094518, (2012); Hao Wu, JAS, PRB 88, 18184506 (2013)

Majorana Spectrum of Fermions on the Surface of ${ }^{3} \mathrm{He}-\mathrm{B}$

Surface Majorana Modes:

- Ground-state and Excitations:

$$
\varepsilon_{b}^{ \pm}= \pm c\left|\mathbf{p}_{\|}\right|, \quad c=\Delta_{\|} / p_{f} \ll v_{f}
$$

Bound-state spectral weight:

$$
\begin{aligned}
N_{b}(\mathbf{p}, z ; \varepsilon) & =\frac{\pi}{2} \Delta_{\perp} \hat{p}_{z} e^{-2 \Delta_{\perp} z / v_{f}} \\
& \times\left[\delta\left(\varepsilon-c\left|\mathbf{p}_{\|}\right|\right)+\delta\left(\varepsilon+c\left|\mathbf{p}_{\|}\right|\right)\right]
\end{aligned}
$$

Surface Majorana Modes:

- Ground-state and Excitations:

$$
\varepsilon_{b}^{ \pm}= \pm c\left|\mathbf{p}_{\|}\right|, \quad c=\Delta_{\|} / p_{f} \ll v_{f}
$$

- $\varepsilon_{b}^{-}<0 \rightsquigarrow$ Helical Spin Current at $T=0$

Bound-state spectral weight:

$$
\begin{aligned}
N_{b}(\mathbf{p}, z ; \varepsilon) & =\frac{\pi}{2} \Delta_{\perp} \hat{p}_{z} e^{-2 \Delta_{\perp} z / v_{f}} \\
& \times\left[\delta\left(\varepsilon-c\left|\mathbf{p}_{\|}\right|\right)+\delta\left(\varepsilon+c\left|\mathbf{p}_{\|}\right|\right)\right]
\end{aligned}
$$

Majorana Spectrum of Fermions on the Surface of ${ }^{3} \mathrm{He}-\mathrm{B}$

Surface Majorana Modes:

- Ground-state and Excitations:

$$
\varepsilon_{b}^{ \pm}= \pm c\left|\mathbf{p}_{\|}\right|, \quad c=\Delta_{\|} / p_{f} \ll v_{f}
$$

- $\varepsilon_{b}^{-}<0 \rightsquigarrow$ Helical Spin Current at $T=0$
- Helical Spin-Orbit Locking

Condensate Flow and Doppler Shift of the Majorana Spectrum

- Doppler Shift from the moving Condensate: $\varepsilon_{\mathbf{p}_{\|}}=c\left|\mathbf{p}_{\| \mid}\right|+\mathbf{p}_{\|} \cdot \vec{v}_{s}$

- Spatial dependence of finite temperature mass current

Superfluid Fraction of a superfluid film of ${ }^{3} \mathrm{He}-\mathrm{B}$ of width $D=13.2 \xi_{\Delta}$

$$
\rho_{\mathrm{S}} / \rho \approx 1-\frac{27 \pi \zeta(3)}{2} \frac{\xi_{\Delta}}{D} \frac{\Delta_{\perp}}{\Delta_{\|}} \frac{m^{*}}{m_{3}}\left(\frac{T}{\Delta_{\|}}\right)^{3}
$$

Summary

- Phase Diagram of ${ }^{3} \mathrm{He}$ Films
- Topology of Superfluid ${ }^{3} \mathrm{He}-\mathrm{A}$
- Chiral Edge States in 2D ${ }^{3} \mathrm{He}-\mathrm{A}$
- Edge Currents and $\mathrm{L}_{z}(T)-L_{z}(0) \sim-T^{2}: R \gg \xi_{0}$
- Edge Currents \leftrightarrow Non-Extensive L_{z}
- Detection of Chiral Currents via e^{-}Mobility
- ${ }^{3} \mathrm{He}-\mathrm{B}$ - 3D Topological SF
- Helical Spin Current
- Symmetry Protected Majorana Modes
- Signatures of the Majorana Spectrum
- Ongoing: NMR, Acoustic and Flow experiments to investigate: (i) topological protection, (ii) the role of broken symmetry and (iii) non-locality of Majorana pairs

