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BCS Pairing from 10-9 to 10+9 K
1908 Helium is liquified
1911 Superconductivity discovered in Hg
1933 Diamagnetism - Meissner Effect
1935 London Theory 
1950 Ginzburg-Landau Theory

1957 BCS Theory 
1957 Landau Fermi Liquid Theory 
1957 Abrikosov’s Theory of Type II SC
1959 Gauge-Invariant Pairing Theory
1959 Field Theory formulation of BCS Pairing
1959 Pairing in Nuclei and Nuclear Matter
1961 Theory of Spin-Triplet Pairing
1962 Josephson Effect
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BCS Pairing from 10-9 to 10+9 K

1972 Discovery of Triplet, P-wave, Superfluid 3He Phases
1979 Discovery of Heavy Electron Superconductors
1982 Exotic Pairing in U-based Heavy Fermions
1986 High Tc Superconductivity in Oxides
1994 Exotic Pairing in Sr2RuO4

1995 D-wave Pairing Discovered in YBCO
2001 Coexistent Ferromagnetism & Superconductivity
2008 Superconductivity in Fe-based Materials

1908 Helium is liquified
1911 Superconductivity discovered in Hg
1933 Diamagnetism - Meissner Effect
1935 London Theory 
1950 Ginzburg-Landau Theory
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1957 Abrikosov’s Theory of Type II SC
1959 Gauge-Invariant Pairing Theory
1959 Field Theory formulation of BCS Pairing
1959 Pairing in Nuclei and Nuclear Matter
1961 Theory of Spin-Triplet Pairing
1962 Josephson Effect

1995 Discovery of Bose-Einstein Condensation of Rb
1998 Discovery Quantized Vortices in BEC
2003 Degeneracy of Cold Fermionic Atoms - 6Li, 40K
2007 BEC-BCS Condensation in 6Li, 40K
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otherwise identical. Under a 120◦ rotation the order parameter undergoes a phase change.
Equivalently, the 120◦ rotation followed by a gauge transformation of φu → φu−2µπ/3 (with
µ = 1 and 2 for the E1u or E2u representations, respectively) is a symmetry operation. Thus,
for the supercurrents at a and a′,

Ia(φu − φs) = Ia′(φu − φs +
2µπ

3
) , (40)

where φs is the phase of the s-wave order parameter. This symmetry has an interesting
experimental consequence. Consider the SQUID constructed from these junctions (Fig. 3).

a

a’
SS !

Fig. 3 SQUID geometry for UPt3/S junctions.

Equation (40) implies that the maximum critical current for the SQUID occurs for an ex-
ternal flux Φ = (n + µ

3 )Φo, where n is an integer and Φo = hc
2e is the flux quantum. This

phase shift of the interference pattern is a signature of residual gauge-rotation symmetry
and allows us to differentiate between E1u, E2u and the other order parameters discussed as
models of UPt3 (Table II). [82] Analogous experiments can be used to test for broken re-
flection symmetries associated with unconventional 1D representations. This idea has been
pursued experimentally to test for a dx2−y2 order parameter in the oxide superconductors.
[83] Analogous arguments apply for the other residual symmetry groups. Other aspects of
the Josephson effect that are specific to unconventional superconductors are discussed in
Refs. ( [84,81,85,86]).

Novel Vortices and Vortex Structures

The initial discovery of multiple superconducting phases in UPt3 was made in field sweeps
of the ultrasound absorption, where a peak was detected at a field of H # 0.6Hc2. [4,5] The
existence of such an anomaly immediately suggested the possibility of a structural transition
in the flux lattice transition, a vortex-core transition, [6] a transition in the background
order parameter, [87] or some combination of order parameter transformations. There are a
surprising number of possibilities for phase transitions of a two-component order parameter
in a magnetic field. Even at the level of a single vortex, there are a number of energetically
stable structures. Tokuyasu, et al. [42] investigated vortices in the 2D models for H||c
and found three classes of stable solutions depending on the material parameters defining
the GL functional: (1) an axially symmetric vortex core, (2) a ‘triangular’ vortex core
with C3 rotational symmetry and (3) a non-axisymmetric vortex with a reflection rotational
symmetry (‘crescent vortex’). These vortex structures can be classified by noting that the

20

UPt3 Ia(ϕu − ϕs) = Ia�(ϕu − ϕs + n
2π

3
)

n = 2 for E2

n = 1 for E1
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We present data on the modulation of the critical current with applied magnetic field in UPt3–Cu–Pb
Josephson junctions and SQUIDs. The junctions were fabricated on polished surfaces of UPt3 single

crystals. The shape of the resulting diffraction patterns provides phase-sensitive information on the

superconducting order parameter. Our corner junction data show asymmetric patterns with respect to

magnetic field, indicating a complex order parameter, and both our junction and SQUID measurements

point to a phase shift of !, supporting the E2u representation of the order parameter.

DOI: 10.1103/PhysRevLett.103.197002 PACS numbers: 74.70.Tx, 74.20.Rp, 74.50.+r

Introduction.—More than two decades after its discov-
ery [1], the mechanism of superconductivity in the heavy-
fermion superconductor UPt3 is still unknown. Although
UPt3 was one of the first superconductors suspected to be
unconventional due to its many unusual properties, the
pairing symmetry has not been unambiguously deter-
mined. Perhaps most unusual is that it exhibits a double
peak in the specific heat [2], indicating two distinct super-
conducting phases, with an initial transition at Tcþ "
550 mK and a second transition Tc# " 500 mK. In addi-
tion to the high-temperature A phase and low-temperature
B phase, subsequent measurements revealed a third phase
at high magnetic fields [3]. Transport measurements show
power law dependencies at low temperatures, revealing the
presence of nodes in the superconducting gap [4,5]. Muon
spin resonance showed signs of spontaneous magnetiza-
tion, and thus time-reversal symmetry breaking (TRSB) in
the low-temperature phase [6], but this result has not been
reproduced in later measurements [7]. NMR studies of the
Knight shift support a triplet pairing mechanism or possi-
bly a singlet state with strong spin-orbit scattering [8].
There is also evidence that a very weak antiferromagnetic
(AFM) moment in the basal plane coexists with super-
conductivity [9].

Numerous models for the pairing symmetry have been
put forward to explain this complicated behavior, but the
two best candidates are the singlet-state E1g and triplet-
state E2u representations of the order parameter [10,11].
Both models feature a real order parameter in the A phase
and a complex order parameter below the second transition
in the B phase. Various efforts have been made to distin-
guish between these two theories on the basis of experi-
ment [12–15], in particular, relying on details of transport
properties, but the relatively subtle differences in node
structure and gap magnitude have proven difficult to re-

solve. Perhaps the clearest difference between these mod-
els is the periodicity of phase winding in the order
parameter, as seen in Table I. A rotation of 90$ about the
c axis causes a phase shift of !=2 in the E1g model, but a
phase shift of! in the E2u model. In this Letter, we propose
to detect this difference in phase with Josephson interfer-
ometry, demonstrating the complex symmetry of the order
parameter and helping to distinguish between these two
models.
Josephson interferometry, used successfully to charac-

terize the cuprates as d wave and Sr2RuO4 as complex p
wave [16–18], remains the most definitive phase-sensitive

TABLE I. Graphical depictions of the E1g and E2u models of
the order parameter for UPt3. Columns denote the high- and low-
temperature (A and B, respectively) superconducting phases, and
rows denote the two theoretical models.

A Phase B Phase

E1g

!ðkÞ ¼ !ðTÞkxkz !ðkÞ ¼ !ðTÞðkx þ ikyÞkz
E2u

"dðkÞ ¼ !ðTÞðk2x # k2yÞkzẑ "dðkÞ ¼ !ðTÞðkx þ ikyÞ2kzẑ

PRL 103, 197002 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

6 NOVEMBER 2009

0031-9007=09=103(19)=197002(4) 197002-1 ! 2009 The American Physical Society

test of the order parameter of unconventional supercon-
ductors. In this technique, a superconducting weak link is
created between two superconductors—in our case, a
single crystal of UPt3 and a film of the conventional
superconductor Pb. Applying a magnetic field to this junc-
tion perpendicular to the current flow creates a phase
gradient along the junction that alters the local supercur-
rent density. Any intrinsic phase differences arising from
the order parameter symmetry will also affect the current
density. In the short junction limit in which fields from the
tunneling current (and the small AFM moment) can be
neglected, the critical current (Ic) can be given as a func-
tion of external flux (!ext) and intrinsic phase difference
(!) by the following:

Icð!extÞ ¼ I0

!!!!!!!!
sinð"!ext=!0 þ !=2Þ

"!ext=!0

!!!!!!!!: (1)

In the case of uniform s wave superconductors, this
results in the conventional Fraunhofer diffraction pattern
shape for plots of critical current vs applied magnetic field.
Even in a superconductor with an anisotropic order pa-
rameter, as long as the junction is on a single flat crystal
face, the pattern will look Fraunhofer. This is because
tunneling probability falls off exponentially with barrier
thickness and so the Josephson current effectively probes a
single k-space direction. If, however, the junction wraps
around the corner of a superconductor with a sign change
in the order parameter between the two tunneling direc-
tions, part of the junction will probe each direction, and the
phase shift will cause a distinctive change in the diffraction
pattern. The predicted patterns for corner junctions in the
low-temperature phase are given in Fig. 1. All the mea-
surements in this Letter were taken well inside the B phase
of UPt3, where we can test for complex superconducting
order. Measurements of the A phase as well as the cross-
over between phases will be the topic of future work.

Experiment.—The UPt3 crystals were grown in an
electron-beam floating zone furnace, and have a measured
residual resistivity ratio (RRR) of greater than 900, in some
cases as high as 1100, indicating their exceptional purity.
We polished the surfaces with 0:3 #m diamond lapping
films and then glued them to a glass substrate with
Pyralin! polyimide coating. After masking with a dry
photoresist, the surfaces were ion milled and 150 nm of
Cu was evaporated as a normal metal barrier, followed by
800 nm of Pb as the superconducting counter-electrode.
Junction dimensions were typically 50% 100 #m, with an
effective thickness of & 1 #m, after including the super-
conducting penetration depths. Previous experiments on
UPt3 have had to take great care to avoid magnetic flux
trapping [19], so the samples were cooled in a Kelvinox!
dilution refrigerator with Cryoperm! and lead cans to
provide the necessary magnetic shielding (Hresidual &
10'4 G). The junction voltages were in the picovolt range,
and so were measured with a superconducting quantum

interference device (SQUID) potentiometer circuit, in
which an inductively coupled SQUID detected the current
flowing through a known resistor in parallel with the
junction.
The junctions exhibited nearly ideal resistively shunted

junction (RSJ) behavior, as well as showing Shapiro steps
when an ac modulation was applied. We measured 11
junctions fabricated on a single crystal face, which dis-
played diffraction patterns that were nearly Fraunhofer and
symmetric around zero field, indicating uniform phase and
no trapped vortices. Examples of these measurements, as
well as a sample photo, can be seen in Fig. 2. It is worth
mentioning that even though the B phase of UPt3 is ex-
pected to be chiral and exhibit TRSB, similar to Sr2RuO4,
we saw none of the evidence for chiral domains in UPt3
that were seen in Sr2RuO4 [18], such as hysteresis or
switching noise.
We also measured three junctions fabricated so that they

straddled the corner between the a and b axes. These
corner junctions behaved quite differently than the edge
junctions. In all cases, the diffraction patterns they pro-

FIG. 1 (color online). Planar representations of the order pa-
rameter laid on top of a schematic of a corner junction, with the
corresponding diffraction pattern placed alongside. (a) An
s-wave order parameter produces the classic Fraunhofer pattern.
(b) The E1g B phase produces an asymmetric double peak.
(c) The E2u B phase produces a symmetric double peak.
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otherwise identical. Under a 120◦ rotation the order parameter undergoes a phase change.
Equivalently, the 120◦ rotation followed by a gauge transformation of φu → φu−2µπ/3 (with
µ = 1 and 2 for the E1u or E2u representations, respectively) is a symmetry operation. Thus,
for the supercurrents at a and a′,

Ia(φu − φs) = Ia′(φu − φs +
2µπ

3
) , (40)

where φs is the phase of the s-wave order parameter. This symmetry has an interesting
experimental consequence. Consider the SQUID constructed from these junctions (Fig. 3).

a

a’
SS !

Fig. 3 SQUID geometry for UPt3/S junctions.

Equation (40) implies that the maximum critical current for the SQUID occurs for an ex-
ternal flux Φ = (n + µ

3 )Φo, where n is an integer and Φo = hc
2e is the flux quantum. This

phase shift of the interference pattern is a signature of residual gauge-rotation symmetry
and allows us to differentiate between E1u, E2u and the other order parameters discussed as
models of UPt3 (Table II). [82] Analogous experiments can be used to test for broken re-
flection symmetries associated with unconventional 1D representations. This idea has been
pursued experimentally to test for a dx2−y2 order parameter in the oxide superconductors.
[83] Analogous arguments apply for the other residual symmetry groups. Other aspects of
the Josephson effect that are specific to unconventional superconductors are discussed in
Refs. ( [84,81,85,86]).

Novel Vortices and Vortex Structures

The initial discovery of multiple superconducting phases in UPt3 was made in field sweeps
of the ultrasound absorption, where a peak was detected at a field of H # 0.6Hc2. [4,5] The
existence of such an anomaly immediately suggested the possibility of a structural transition
in the flux lattice transition, a vortex-core transition, [6] a transition in the background
order parameter, [87] or some combination of order parameter transformations. There are a
surprising number of possibilities for phase transitions of a two-component order parameter
in a magnetic field. Even at the level of a single vortex, there are a number of energetically
stable structures. Tokuyasu, et al. [42] investigated vortices in the 2D models for H||c
and found three classes of stable solutions depending on the material parameters defining
the GL functional: (1) an axially symmetric vortex core, (2) a ‘triangular’ vortex core
with C3 rotational symmetry and (3) a non-axisymmetric vortex with a reflection rotational
symmetry (‘crescent vortex’). These vortex structures can be classified by noting that the

20

UPt3 Ia(ϕu − ϕs) = Ia�(ϕu − ϕs + n
2π

3
)

n = 2 for E2

n = 1 for E1
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Phase-Sensitive Heat Transport through a Josephson Junction
 E. Zhao, T. Lowfander, JAS, Phys. Rev. B. 69, 134503 (2004).
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Phase-Sensitive Heat Transport through a Josephson Junction
 E. Zhao, T. Lowfander, JAS, Phys. Rev. B. 69, 134503 (2004).
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