28th International Conference on Low Temperature Physics, Gothenburg, Sweden, August 11, 2017

Signatures of Majorana-Weyl Fermions in Superfluid ³He

J. A. Sauls

Northwestern University

Oleksii Shevtsov

- Parity violation
- ► Superfluid ³He
- Edge States & Currents

- Electron Bubbles in ³He
- Anomalous Hall Effect
- Electron Transport in ³He

▶ NSF Grant DMR-1508730

28th International Conference on Low Temperature Physics, Gothenburg, Sweden, August 11, 2017

The Left Hand of the Electron in Superfluid ³He

J. A. Sauls

Northwestern University

Oleksii Shevtsov

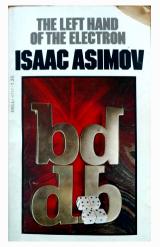
- Parity violation
- ► Superfluid ³He
- Edge States & Currents

- Electron Bubbles in ³He
- Anomalous Hall Effect
- ► Electron Transport in ³He

▶ NSF Grant DMR-1508730

The Left Hand of the Electron, Issac Asimov, circa 1971

▶ An Essay on the Discovery of Parity Violation by the Weak Interaction



▶ ... And Reflections on Mirror Symmetry in Nature

Parity Violation in Beta Decay of ⁶⁰Co - Physical Review 105, 1413 (1957)

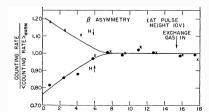
Experimental Test of Parity Conservation in Beta Decay*

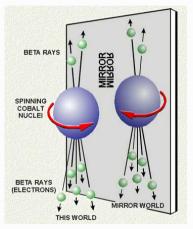
C. S. WU, Columbia University, New York, New York

AND

E. AMBLER, R. W. HAYWARD, D. D. HOPPES, AND R. P. HUDSON, National Bureau of Standards, Washington, D. C. (Received January 15, 1957)

▶ T. D. Lee and C. N. Yang, Phys Rev 104, 204 (1956) ${}^{60}Co \rightarrow {}^{60}Ni + e^- + \bar{\nu}$





▶ Current of Beta electrons is (anti) correlated with the Spin of the ⁶⁰Co nucleus. $\langle \vec{S} \cdot \vec{p} \rangle \neq 0 \rightsquigarrow$ Parity violation

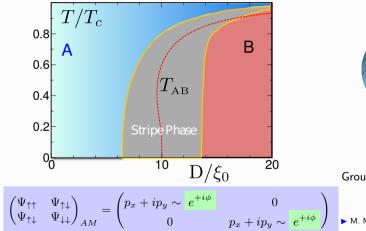
Realization of Broken Time-Reversal and Mirror Symmetry by the Vacuum State of ³He Films

► Length Scale for Strong Confinement:

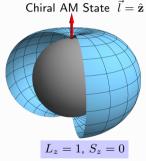
 $\xi_0 = \hbar v_f/2\pi k_B T_c \approx 20-80\,\mathrm{nm}$

▶ L. Levitov et al., Science 340, 6134 (2013)

A. Vorontsov & J. A. Sauls, PRL 98, 045301 (2007)



$$\begin{array}{c|c} \text{SO}(3)_{\text{S}} \times \text{SO}(3)_{\text{L}} \times \text{U}(1)_{\text{N}} \times \begin{array}{c} \text{T} \\ & \downarrow \\ \\ \text{SO}(2)_{\text{S}} \times \text{U}(1)_{\text{N-L}_z} \times \end{array} \begin{array}{c} \text{Z}_2 \end{array}$$



Ground-State Angular Momentum

$$\langle \hat{L}_z \rangle = \frac{N}{2}\hbar$$

M. McClure and S. Takagi PRL 43, 596 (1979)

Signatures of Broken T and P Symmetry in ³He-A

- \blacktriangleright Spontaneous Symmetry Breaking \rightsquigarrow Emergent Topology of the 3 He-A Ground State
- ▶ Chirality + Topology ~→ Weyl-Majorana Edge States ~→ Chiral Edge Currents
- \blacktriangleright Broken T and P \rightsquigarrow Anomalous Hall Effects in Chiral Superfluids, e.g. 3 He-A
- ▶ Confinement → Edge State Hybridization and New Broken Symmetry Phases of ³He

Real-Space vs. Momentum-Space Topology

Topology in Real Space $\Psi(\mathbf{r}) = |\Psi(r)| e^{i\vartheta(\mathbf{r})}$

Chiral Symmetry \rightsquigarrow Topology in Momentum Space $\Psi(\mathbf{p}) = \Delta(p_x \pm ip_y) \sim e^{\pm i\varphi_{\mathbf{p}}}$

Phase Winding

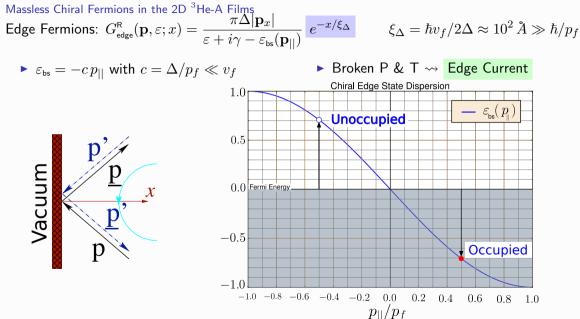
$$N_C = \frac{1}{2\pi} \oint_C d\vec{l} \cdot \frac{1}{|\Psi|} \mathrm{Im}[\nabla \Psi] \in \{0, \pm 1, \pm 2, \ldots\}$$

 Massless Fermions confined in the Vortex Core

Topological Quantum Number: $L_z = \pm 1$

$$N_{\rm 2D} = \frac{1}{2\pi} \oint \ d{\bf p} \cdot \frac{1}{|\Psi({\bf p})|} {\rm Im}[{\boldsymbol \nabla}_{{\bf p}} \Psi({\bf p})] = L_z$$

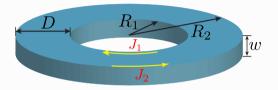
Massless Chiral Fermions
 Nodal Fermions in 3D
 Edge Fermions in 2D



J. A. Sauls, Phys. Rev. B 84, 214509 (2011)

Ground-State Angular Momentum of ³He-A in a Toroidal Geometry

³He-A confined in a toroidal cavity



•
$$R_1, R_2, R_1 - R_2 \gg \xi_0$$

Sheet Current:
$$J = \frac{1}{4} n \hbar$$
 ($n = N/V = {}^{3}$ He density)

- Counter-propagating Edge Currents: $J_1 = -J_2 = \frac{1}{4} n \hbar$
- Angular Momentum:

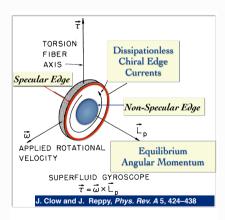
$$L_z = 2\pi h \left(R_1^2 - R_2^2 \right) \times \frac{1}{4} n \hbar = (N/2) \hbar$$

McClure-Takagi's Global Symmetry Result PRL 43, 596 (1979)

Long-Standing Challenge: Detect the Ground-State Angular Momentum of ³He-A

Possible Gyroscopic Experiment to Measure of $L_z(T)$

Hyoungsoon Choi (KAIST) [micro-mechanical gyroscope @ 200 μK]



Thermal Signature of Massless Chiral Fermions

Power Law for
$$T \lesssim 0.5T_c$$

 $L_z = (N/2)\hbar \left(1 - \frac{c (T/\Delta)^2}{c (T/\Delta)^2}\right)$

Toroidal Geometry with Engineered Surfaces

Incomplete Screening

 $L_z > (N/2)\hbar$

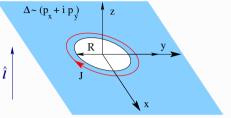
Direct Signature of Edge Currents

J. A. Sauls, Phys. Rev. B 84, 214509 (2011)

Detection of Broken Time-Reversal Symmetry, Mirror Symmetry & Weyl Fermions

Anomalous Hall Effect for Electrons in Chiral Superfluid ³He

Chiral Edge Current Circulating a Hole or Defect in a Chiral Superfluid



• $R \gg \xi_0 \approx 100 \,\mathrm{nm}$

Sheet Current :

$$J \equiv \int dx \, J_{\varphi}(x)$$

- Quantized Sheet Current: $\frac{1}{4} n \hbar$ $(n = N/V = {}^{3}$ He density)
- ► Edge Current *Counter*-Circulates: $J = -\frac{1}{4} n \hbar$ w.r.t. Chirality: $\hat{\mathbf{l}} = +\mathbf{z}$

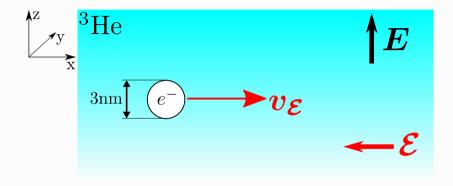
Angular Momentum: $L_z = 2\pi h R^2 \times (-\frac{1}{4} n \hbar) = -(N_{\text{hole}}/2) \hbar$

 $N_{\mathsf{hole}} = \mathsf{Number of}\ ^3\mathsf{He}$ atoms excluded from the Hole

... An object in ³He-A *inherits* angular momentum from the Condensate of Chiral Pairs!

J. A. Sauls, Phys. Rev. B 84, 214509 (2011)

Electron bubbles in the Normal Fermi liquid phase of ³He



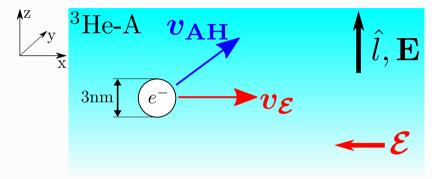
- Bubble with $R \simeq 1.5$ nm, $0.1 \text{ nm} \simeq \lambda_f \ll R \ll \xi_0 \simeq 80 \text{ nm}$
- ▶ Effective mass M ≃ 100m₃ (m₃ − atomic mass of ³He)

- ▶ QPs mean free path $l \gg R$
- Mobility of ³He is *independent of* T for $T_c < T < 50 \text{ mK}$

B. Josephson and J. Leckner, PRL 23, 111 (1969)

Electron bubbles in chiral superfluid ³He-A

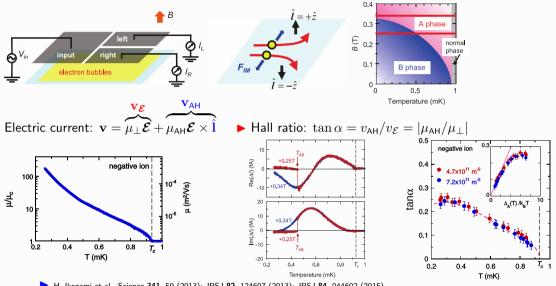
 $\Delta(\hat{k}) = \Delta(\hat{k}_x + i\hat{k}_y) = \Delta e^{i\phi_{\mathbf{k}}}$



• Current:
$$\mathbf{v} = \overbrace{\mu_{\perp} \mathcal{E}}^{\mathbf{v}_{\mathcal{E}}} + \overbrace{\mu_{AH} \mathcal{E} \times \hat{\mathbf{l}}}^{\mathbf{v}_{AH}}$$
 R. Salmelin, M. Salomaa & V. Mineev, PRL 63, 868 (1989)

• Hall ratio: $\tan \alpha = v_{AH}/v_{\mathcal{E}} = |\mu_{AH}/\mu_{\perp}|$

Mobility of Electron Bubbles in ³He-A



H. Ikegami et al., Science 341, 59 (2013); JPSJ 82, 124607 (2013); JPSJ 84, 044602 (2015)

Forces on the Electron bubble in ³He-A:

•
$$M \frac{d\mathbf{v}}{dt} = e\boldsymbol{\mathcal{E}} + \mathbf{F}_{\mathrm{QP}}, \quad \mathbf{F}_{QP} - \text{force from quasiparticle collisions}$$

• $\mathbf{F}_{QP} = -\overleftrightarrow{\eta} \cdot \mathbf{v}, \quad \overleftrightarrow{\eta} - \text{generalized Stokes tensor}$
• $\overleftrightarrow{\eta} = \begin{pmatrix} \eta_{\perp} & \eta_{\mathsf{AH}} & 0\\ -\eta_{\mathsf{AH}} & \eta_{\perp} & 0\\ 0 & \eta_{\parallel} \end{pmatrix}$ for chiral symmetry with $\hat{\mathbf{l}} \parallel \mathbf{e}_z$
• $M \frac{d\mathbf{v}}{dt} = e\boldsymbol{\mathcal{E}} - \eta_{\perp}\mathbf{v} + \frac{e}{c}\mathbf{v} \times \mathbf{B}_{\text{eff}}, \quad \text{for } \boldsymbol{\mathcal{E}} \perp \hat{\mathbf{l}}$
• $\mathbf{B}_{\text{eff}} = -\frac{c}{e}\eta_{\mathsf{AH}}\hat{\mathbf{l}} \quad B_{\text{eff}} \simeq 10^3 - 10^4 \text{ T} \quad !!!$
• Mobility: $\frac{d\mathbf{v}}{dt} = 0 \quad \rightsquigarrow \quad \mathbf{v} = \overleftrightarrow{\mu}\boldsymbol{\mathcal{E}}, \quad \text{where} \quad \overleftrightarrow{\mu} = e \overleftrightarrow{\eta}^{-1}$

▶ O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

T-matrix description of Quasiparticle-Ion scattering

▶ Lippmann-Schwinger equation for the *T*-matrix ($\varepsilon = E + i\eta$; $\eta \rightarrow 0^+$):

$$\hat{T}_{S}^{R}(\mathbf{k}',\mathbf{k},E) = \hat{T}_{N}^{R}(\mathbf{k}',\mathbf{k}) + \int \frac{d^{3}k''}{(2\pi)^{3}} \hat{T}_{N}^{R}(\mathbf{k}',\mathbf{k}'') \Big[\hat{G}_{S}^{R}(\mathbf{k}'',E) - \hat{G}_{N}^{R}(\mathbf{k}'',E) \Big] \hat{T}_{S}^{R}(\mathbf{k}'',\mathbf{k},E)$$

$$\hat{G}_{S}^{R}(\mathbf{k}, E) = \frac{1}{\varepsilon^{2} - E_{\mathbf{k}}^{2}} \begin{pmatrix} \varepsilon + \xi_{k} & -\Delta(\hat{\mathbf{k}}) \\ -\Delta^{\dagger}(\hat{\mathbf{k}}) & \varepsilon - \xi_{k} \end{pmatrix}, \quad E_{\mathbf{k}} = \sqrt{\xi_{k}^{2} + |\Delta(\hat{\mathbf{k}})|^{2}}, \quad \xi_{k} = \frac{\hbar^{2}k^{2}}{2m^{*}} - \mu$$

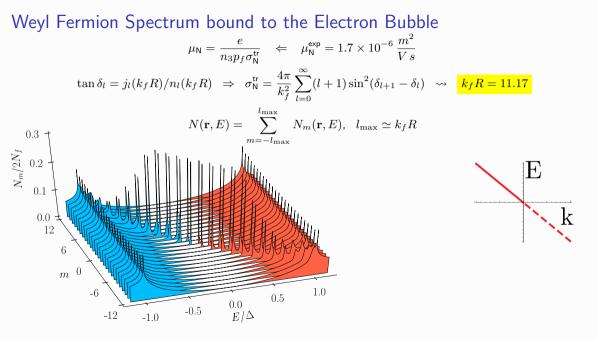
► Normal-state *T*-matrix:

$$\hat{T}_N^R(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = \begin{pmatrix} t_N^R(\hat{\mathbf{k}}',\hat{\mathbf{k}}) & 0\\ 0 & -[t_N^R(-\hat{\mathbf{k}}',-\hat{\mathbf{k}})]^\dagger \end{pmatrix}$$
 in p-h (Nambu) space, where

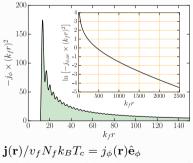
$$t_N^R(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = -\frac{1}{\pi N_f} \sum_{l=0}^{\infty} (2l+1)e^{i\delta_l} \sin \delta_l P_l(\hat{\mathbf{k}}' \cdot \hat{\mathbf{k}}), \quad P_l(x) - \text{Legendre function}$$

▶ Hard-sphere potential $\rightarrow \tan \delta_l = j_l(k_f R)/n_l(k_f R)$ – spherical Bessel functions

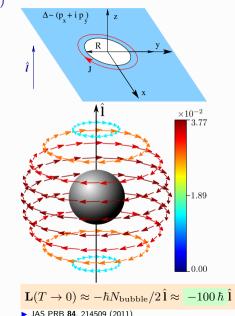
 \blacktriangleright $k_f R$ – determined by the Normal-State Mobility



Current bound to an electron bubble ($k_f R = 11.17$)



O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)



Determination of the Stokes Tensor from the QP-lon T-matrix (i) Fermi's golden rule and the QP scattering rate:

$$\Gamma(\mathbf{k}',\mathbf{k}) = \frac{2\pi}{\hbar} W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) \delta(E_{\mathbf{k}'} - E_{\mathbf{k}}), \quad W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = \frac{1}{2} \sum_{\tau'\sigma';\tau\sigma} |\overbrace{\langle \mathbf{k}',\sigma',\tau'}^{\text{outgoing}} \hat{T}_S \overbrace{|\mathbf{k},\sigma,\tau\rangle}^{\text{incoming}}|^2$$

(ii) Drag force from QP-ion collisions (linear in v): **b** Baym et al. PRL 22, 20 (1969)

$$\mathbf{F}_{\mathsf{QP}} = -\sum_{\mathbf{k},\mathbf{k}'} \hbar(\mathbf{k}' - \mathbf{k}) \left[\hbar \mathbf{k}' \mathbf{v} f_{\mathbf{k}} \left(-\frac{\partial f_{\mathbf{k}'}}{\partial E} \right) - \hbar \mathbf{k} \mathbf{v} (1 - f_{\mathbf{k}'}) \left(-\frac{\partial f_{\mathbf{k}}}{\partial E} \right) \right] \Gamma(\mathbf{k}', \mathbf{k})$$

(iii) Microscopic reversibility condition: $W(\hat{\mathbf{k}}', \hat{\mathbf{k}}: +\mathbf{l}) = W(\hat{\mathbf{k}}, \hat{\mathbf{k}}': -\mathbf{l})$

Broken T and mirror symmetries in ³He-A \Rightarrow fixed $\hat{\mathbf{l}} \rightsquigarrow W(\hat{\mathbf{k}}', \hat{\mathbf{k}}) \neq W(\hat{\mathbf{k}}, \hat{\mathbf{k}}')$ (iv) Generalized Stokes tensor:

$$\mathbf{F}_{\mathsf{QP}} = - \stackrel{\leftrightarrow}{\eta} \cdot \mathbf{v} \quad \rightsquigarrow \quad \eta_{ij} = n_3 p_f \int_0^\infty dE \left(-2 \frac{\partial f}{\partial E} \right) \sigma_{ij}(E) \quad , \quad \stackrel{\leftrightarrow}{\eta} = \begin{pmatrix} \eta_\perp & \eta_{\mathsf{AH}} & 0\\ -\eta_{\mathsf{AH}} & \eta_\perp & 0\\ 0 & 0 & \eta_\parallel \end{pmatrix}$$

 $n_3 = \frac{k_f^3}{3\pi^2} - {}^3$ He particle density, $\sigma_{ij}(E)$ – transport scattering cross section, $f(E) = [\exp(E/k_BT) + 1]^{-1}$ – Fermi Distribution Mirror-symmetric scattering \Rightarrow longitudinal drag force

$$\mathbf{F}_{\mathsf{QP}} = -\stackrel{\leftrightarrow}{\eta} \cdot \mathbf{v}, \quad \eta_{ij} = n_3 p_f \int_0^\infty dE \left(-2\frac{\partial f}{\partial E}\right) \sigma_{ij}(E)$$

Subdivide by mirror symmetry: $W(\hat{\mathbf{k}'}, \hat{\mathbf{k}}) = W^{(+)}(\hat{\mathbf{k}'}, \hat{\mathbf{k}}) + W^{(-)}(\hat{\mathbf{k}'}, \hat{\mathbf{k}}),$ $\sigma_{ij}(E) = \frac{\sigma_{ij}^{(+)}(E)}{\sigma_{ij}^{(-)}(E)} + \sigma_{ij}^{(-)}(E),$ - (1) E) C

$$\tau_{ij}^{(+)}(E) = \frac{3}{4} \int_{E \ge |\Delta(\hat{\mathbf{k}}')|} d\Omega_{\mathbf{k}'} \int_{E \ge |\Delta(\hat{\mathbf{k}})|} \frac{d\Omega_{\mathbf{k}}}{4\pi} \left[(\hat{\mathbf{k}}'_i - \hat{\mathbf{k}}_i) (\hat{\mathbf{k}}'_j - \hat{\mathbf{k}}_j) \right] \frac{d\sigma^{(+)}}{d\Omega_{\mathbf{k}'}} (\hat{\mathbf{k}}', \hat{\mathbf{k}}; R)$$

Mirror-symmetric cross section: $W^{(+)}(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = [W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) + W(\hat{\mathbf{k}},\hat{\mathbf{k}}')]/2$

$$\frac{d\sigma^{(+)}}{d\Omega_{\mathbf{k}'}}(\hat{\mathbf{k}}',\hat{\mathbf{k}};E) = \left(\frac{m^*}{2\pi\hbar^2}\right)^2 \frac{E}{\sqrt{E^2 - |\Delta(\hat{\mathbf{k}}')|^2}} W^{(+)}(\hat{\mathbf{k}}',\hat{\mathbf{k}}) \frac{E}{\sqrt{E^2 - |\Delta(\hat{\mathbf{k}})|^2}}$$

 $\rightsquigarrow \text{Stokes Drag } \eta_{xx}^{(+)} = \eta_{yy}^{(+)} \equiv \eta_{\perp}, \ \eta_{zz}^{(+)} \equiv \eta_{\parallel} \text{, No transverse force } \left[\left[\eta_{ij}^{(+)} \right]_{zz} \right] = 0$

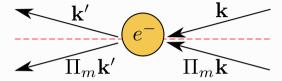
Mirror-antisymmetric scattering \Rightarrow transverse force

$$\mathbf{F}_{\mathsf{QP}} = -\overleftrightarrow{\eta} \cdot \mathbf{v}, \quad \eta_{ij} = n_3 p_f \int_0^\infty dE \left(-2\frac{\partial f}{\partial E}\right) \sigma_{ij}(E)$$

Subdivide by mirror symmetry:

$$W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = W^{(+)}(\hat{\mathbf{k}}',\hat{\mathbf{k}}) + W^{(-)}(\hat{\mathbf{k}}',\hat{\mathbf{k}})$$

$$\sigma_{ij}(E) = \sigma_{ij}^{(+)}(E) + \sigma_{ij}^{(-)}(E)$$

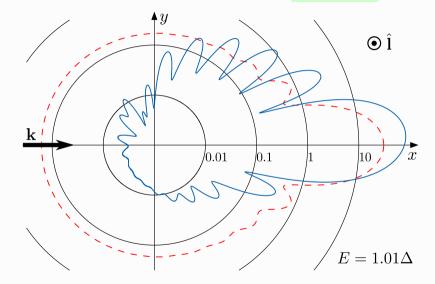


$$\sigma_{ij}^{(-)}(E) = \frac{3}{4} \int_{E \ge |\Delta(\hat{\mathbf{k}}')|} d\Omega_{\mathbf{k}'} \int_{E \ge |\Delta(\hat{\mathbf{k}})|} \frac{d\Omega_{\mathbf{k}}}{4\pi} \left[\epsilon_{ijk} (\hat{\mathbf{k}}' \times \hat{\mathbf{k}})_k \right] \frac{d\sigma^{(-)}}{d\Omega_{\mathbf{k}'}} (\hat{\mathbf{k}}', \hat{\mathbf{k}}; E) \left[f(E) - \frac{1}{2} \right]$$

Mirror-antisymmetric cross section: $W^{(-)}(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = [W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) - W(\hat{\mathbf{k}},\hat{\mathbf{k}}')]/2$

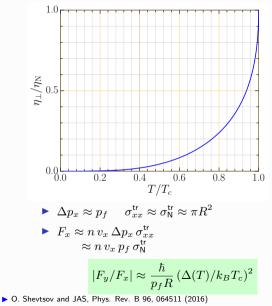
$$\frac{d\sigma^{(-)}}{d\Omega_{\mathbf{k}'}}(\hat{\mathbf{k}}',\hat{\mathbf{k}};E) = \left(\frac{m^*}{2\pi\hbar^2}\right)^2 \frac{E}{\sqrt{E^2 - |\Delta(\hat{\mathbf{k}}')|^2}} W^{(-)}(\hat{\mathbf{k}}',\hat{\mathbf{k}}) \frac{E}{\sqrt{E^2 - |\Delta(\hat{\mathbf{k}})|^2}}$$
Transverse force $\eta_{xy}^{(-)} = -\eta_{yx}^{(-)} \equiv \eta_{AH} \Rightarrow$ anomalous Hall effect
 \mathbf{P} 0. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

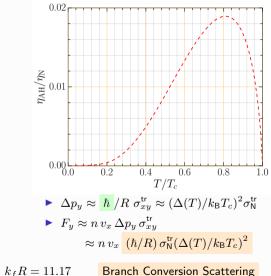
Differential cross section for Bogoliubov QP-Ion Scattering $k_f R = 11.17$



O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

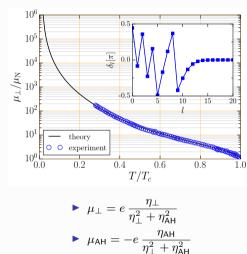
Theoretical Results for the Drag and Transverse Forces

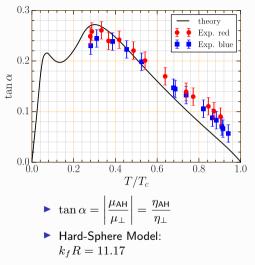




Branch Conversion Scattering

Comparison between Theory and Experiment for the Drag and Transverse Forces





Summary

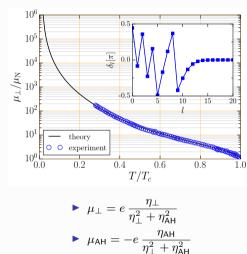
- \blacktriangleright Electrons in $^{3}\text{He-A}$ are "dressed" by a spectrum of Weyl Fermions
- ▶ Electrons in ³He-A are "Left handed" in a Right-handed Chiral Vacuum $\rightarrow L_z \approx -(N_{bubble}/2)\hbar \approx -100 \hbar$
- Experiment: RIKEN mobility experiments \rightsquigarrow Observation an AHE in ³He-A
- Scattering of Bogoliubov QPs by the dressed Ion \rightsquigarrow Drag Force $(-\eta_{\perp}\mathbf{v})$ and Transverse Force $(\frac{e}{c}\mathbf{v}\times\mathbf{B}_{eff})$ on the Ion

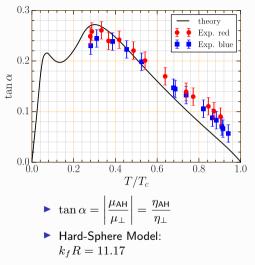
• Anomalous Hall Field:
$$\mathbf{B}_{\text{eff}} \approx \frac{\Phi_0}{3\pi^2} k_f^2 (k_f R)^2 \left(\frac{\eta_{\text{AH}}}{\eta_{\text{N}}}\right) \mathbf{l} \simeq 10^3 - 10^4 \,\text{T} \mathbf{l}$$

- Mechanism: Skew/Andreev Scattering of Bogoliubov QPs by the dressed Ion
- Origin: Broken Mirror & Time-Reversal Symmetry $\rightsquigarrow W(\mathbf{k}, \mathbf{k}') \neq W(\mathbf{k}', \mathbf{k})$
- ► Theory: ~→ Quantitative account of RIKEN mobility experiments
- ▶ New directions for Transport in ³He-A & Chiral Superconductors

Anomalous Hall and Thermal Hall Effects in Chiral Superconductors: UPt3 & Sr2RuO4

Comparison between Theory and Experiment for the Drag and Transverse Forces





Theoretical Models for the QP-ion potential

$$\bullet \ U(r) = \begin{cases} U_0, & r < R, \\ -U_1, & R < r < R', \\ 0, & r > R'. \end{cases}$$

▶ \rightsquigarrow Hard-Sphere Potential: $U_1 = 0$, R' = R, $U_0 \rightarrow \infty$

•
$$U(x) = U_0 [1 - \tanh[(x - b)/c]], \quad x = k_f r$$

- ► $U(x) = U_0 / \cosh^2[\alpha x^n]$, $x = k_f r$ (Pöschl-Teller-like potential)
- ▶ Random phase shifts: $\{\delta_l | l = 1 \dots l_{max}\}$ are generated with δ_0 is an adjustable parameter
- ▶ Parameters for all models are chosen to fit the experimental value of the normal-state mobility, $\mu_N^{\exp} = 1.7 \times 10^{-6} m^2 / V \cdot s$

Theoretical Models for the QP-ion potential

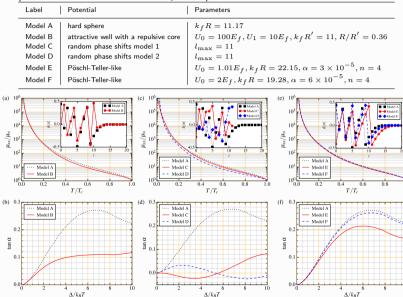
Label	Potential	Parameters
Model A	hard sphere	$k_f R = 11.17$
Model B	repulsive core & attractive well	$U_0 = 100E_f, U_1 = 10E_f, k_f R' = 11, R/R' = 0.36$
Model C	random phase shifts model 1	$l_{\max} = 11$
Model D	random phase shifts model 2	$l_{\max} = 11$
Model E	Pöschl-Teller-like	$U_0 = 1.01E_f, k_f R = 22.15, \alpha = 3 \times 10^{-5}, n = 4$
Model F	Pöschl-Teller-like	$U_0 = 2E_f, k_f R = 19.28, \alpha = 6 \times 10^{-5}, n = 4$
Model G	hyperbolic tangent	$U_0 = 1.01E_f, k_f R = 14.93, b = 12.47, c = 0.246$
Model H	hyperbolic tangent	$U_0 = 2E_f, k_f R = 14.18, b = 11.92, c = 0.226$
Model I	soft sphere 1	$U_0 = 1.01 E_f, k_f R = 12.48$
Model J	soft sphere 2	$U_0 = 2E_f, k_f R = 11.95$



1.0

10

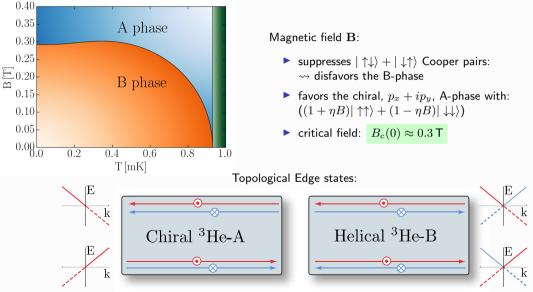
Hard-sphere model with $k_f R = 11.17$ (Model A)



10

Comparison with Experiment for Models for the QP-ion potential

Stabilizing the A-phase at Low Temperatures

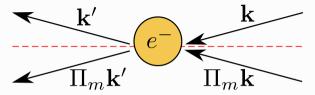


Calculation of LDOS and Current Density

$$\begin{split} \hat{\mathcal{G}}_{S}^{R}(\mathbf{r}',\mathbf{r},E) &= \int \frac{d^{3}k}{(2\pi)^{3}} \int \frac{d^{3}k'}{(2\pi)^{3}} e^{i\mathbf{k}'\mathbf{r}'} e^{-i\mathbf{k}\mathbf{r}} \hat{\mathcal{G}}_{S}^{R}(\mathbf{k}',\mathbf{k},E) \\ \hat{\mathcal{G}}_{S}^{R}(\mathbf{k}',\mathbf{k},E) &= (2\pi)^{3} \hat{\mathcal{G}}_{S}^{R}(\mathbf{k},E) \delta_{\mathbf{k}',\mathbf{k}} + \hat{\mathcal{G}}_{S}^{R}(\mathbf{k}',E) \hat{T}_{S}(\mathbf{k}',\mathbf{k},E) \hat{\mathcal{G}}_{S}^{R}(\mathbf{k},E) \\ \hat{\mathcal{G}}_{S}^{R}(\mathbf{k},E) &= \frac{1}{\varepsilon^{2} - E_{\mathbf{k}}^{2}} \begin{pmatrix} \varepsilon + \xi_{k} & -\Delta(\hat{\mathbf{k}}) \\ -\Delta^{\dagger}(\hat{\mathbf{k}}) & \varepsilon - \xi_{k} \end{pmatrix}, \quad \varepsilon = E + i\eta, \quad \eta \to 0^{+} \\ N(\mathbf{r},E) &= -\frac{1}{2\pi} \mathrm{Im} \left\{ \mathrm{Tr} \left[\hat{\mathcal{G}}_{S}^{R}(\mathbf{r},\mathbf{r},E) \right] \right\} \\ \mathbf{j}(\mathbf{r}) &= \frac{\hbar}{4mi} k_{B} T \sum_{n=-\infty}^{\infty} \lim_{\mathbf{r} \to \mathbf{r}'} \mathrm{Tr} \left[(\nabla_{\mathbf{r}'} - \nabla_{\mathbf{r}}) \hat{\mathcal{G}}^{M}(\mathbf{r}',\mathbf{r},\epsilon_{n}) \right] \\ \hat{\mathcal{G}}_{S}^{R}(\mathbf{r}',\mathbf{r},E) &= \hat{\mathcal{G}}_{S}^{M}(\mathbf{r}',\mathbf{r},\epsilon_{n}) \Big|_{i\epsilon_{n} \to \varepsilon}, \text{ for } n \ge 0 \end{split}$$

$$\hat{\mathcal{G}}_{S}^{M}(\mathbf{k},\mathbf{k}',-\epsilon_{n})=\left[\hat{\mathcal{G}}_{S}^{M}(\mathbf{k}',\mathbf{k},\epsilon_{n})\right]^{\dagger}$$

Broken Time-Reversal (T) & mirror (Π_m) symmetries in Chiral Superfluids



- Broken TRS: $\mathbf{T} \cdot (\hat{p}_x + i\hat{p}_y) = (\hat{p}_x i\hat{p}_y)$
- Broken mirror symmetry: $\Pi_{m} \cdot (\hat{p}_{x} + i\hat{p}_{y}) = (\hat{p}_{x} i\hat{p}_{y})$
- Chiral symmetry: $\mathbf{C} = \mathbf{T} \times \Pi_{\mathbf{m}} \longrightarrow \mathbf{C} \cdot (\hat{p}_x + i\hat{p}_y) = (\hat{p}_x + i\hat{p}_y)$
- Microscopic reversibility for chiral superfluids: $W(\hat{\mathbf{k}}', \hat{\mathbf{k}}; +\hat{\mathbf{l}}) = W(\hat{\mathbf{k}}, \hat{\mathbf{k}}'; -\hat{\mathbf{l}})$
- For BTRS: the chiral axis $\hat{\mathbf{l}}$ is fixed $\rightsquigarrow W(\hat{\mathbf{k}}', \hat{\mathbf{k}}; \hat{\mathbf{l}}) \neq W(\hat{\mathbf{k}}, \hat{\mathbf{k}}'; \hat{\mathbf{l}})$

Determination of the Electron Bubble Radius

(i) Energy required to create a bubble:

$$E(R,P)=E_0(U_0,R)+4\pi R^2\gamma+rac{4\pi}{3}R^3P$$
, P – pressure

(ii) For $U_0 \rightarrow \infty$: $E_0 = -U_0 + \pi^2 \hbar^2/2m_e R^2$ – ground state energy

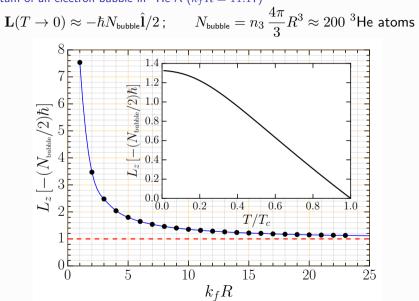
(iii) Surface Energy: hydrostatic surface tension $\rightsquigarrow \gamma = 0.15\,{\rm erg/cm^2}$

(iv) Minimizing E w.r.t.
$$R \rightsquigarrow P = \pi \hbar^2/4m_e R^5 - 2\gamma/R$$

(v) For zero pressure,
$$P = 0$$
:
 $R = \left(\frac{\pi\hbar^2}{8m_e\gamma}\right)^{1/4} \approx 2.38 \,\mathrm{nm} \quad \rightsquigarrow \quad k_f R = 18.67$
Transport $\rightsquigarrow k_f R = 11.17$

▶ A. Ahonen et al., J. Low Temp. Phys., 30(1):205228, 1978

Angular momentum of an electron bubble in ³He-A ($k_f R = 11.17$)



Mobility of an electron bubble in the Normal Fermi Liquid

(i)
$$t_{\mathsf{N}}^{R}(\hat{\mathbf{k}}',\hat{\mathbf{k}};E) = \sum_{l=0}^{\infty} (2l+1)t_{l}^{R}(E)P_{l}(\hat{\mathbf{k}}'\cdot\hat{\mathbf{k}})$$

(ii)
$$t_l^R(E) = -\frac{1}{\pi N_f} e^{i\delta_l} \sin \delta_l$$

(iii)
$$\frac{d\sigma}{d\Omega_{\mathbf{k}'}} = \left(\frac{m^*}{2\pi\hbar^2}\right)^2 |t_{\mathsf{N}}^R(\hat{\mathbf{k}}', \hat{\mathbf{k}}; E)|^2$$

(iv)
$$\sigma_{\mathsf{N}}^{\mathsf{tr}} = \int \frac{d\Omega_{\mathbf{k}'}}{4\pi} (1 - \hat{\mathbf{k}} \cdot \hat{\mathbf{k}'}) \frac{d\sigma}{d\Omega_{\mathbf{k}'}} = \frac{4\pi}{k_f^2} \sum_{l=0}^{\infty} (l+1) \sin^2(\delta_{l+1} - \delta_l)$$

(v)
$$\mu_{\rm N} = \frac{e}{n_3 p_f \sigma_{\rm N}^{\rm tr}}, \quad p_f = \hbar k_f, \quad n_3 = \frac{k_f^3}{3\pi^2}$$

Calculation of LDOS and Current Density

$$\begin{split} \hat{\mathcal{G}}_{S}^{R}(\mathbf{r}',\mathbf{r},E) &= \int \frac{d^{3}k}{(2\pi)^{3}} \int \frac{d^{3}k'}{(2\pi)^{3}} e^{i\mathbf{k}'\mathbf{r}'} e^{-i\mathbf{k}\mathbf{r}} \hat{\mathcal{G}}_{S}^{R}(\mathbf{k}',\mathbf{k},E) \\ \hat{\mathcal{G}}_{S}^{R}(\mathbf{k}',\mathbf{k},E) &= (2\pi)^{3} \hat{G}_{S}^{R}(\mathbf{k},E) \delta_{\mathbf{k}',\mathbf{k}} + \hat{G}_{S}^{R}(\mathbf{k}',E) \hat{T}_{S}(\mathbf{k}',\mathbf{k},E) \hat{G}_{S}^{R}(\mathbf{k},E) \\ \hat{G}_{S}^{R}(\mathbf{k},E) &= \frac{1}{\varepsilon^{2} - E_{\mathbf{k}}^{2}} \begin{pmatrix} \varepsilon + \xi_{k} & -\Delta(\hat{\mathbf{k}}) \\ -\Delta^{\dagger}(\hat{\mathbf{k}}) & \varepsilon - \xi_{k} \end{pmatrix}, \quad \varepsilon = E + i\eta, \quad \eta \to 0^{+} \\ N(\mathbf{r},E) &= -\frac{1}{2\pi} \mathrm{Im} \left\{ \mathrm{Tr} \left[\hat{\mathcal{G}}_{S}^{R}(\mathbf{r},\mathbf{r},E) \right] \right\} \\ \mathbf{j}(\mathbf{r}) &= \frac{\hbar}{4mi} k_{B} T \sum_{n=-\infty}^{\infty} \lim_{\mathbf{r} \to \mathbf{r}'} \mathrm{Tr} \left[(\nabla_{\mathbf{r}'} - \nabla_{\mathbf{r}}) \hat{\mathcal{G}}^{M}(\mathbf{r}',\mathbf{r},\epsilon_{n}) \right] \\ \hat{\mathcal{G}}_{S}^{R}(\mathbf{r}',\mathbf{r},E) &= \hat{\mathcal{G}}_{S}^{M}(\mathbf{r}',\mathbf{r},\epsilon_{n}) \Big|_{\mathbf{r} \to \mathbf{r}}, \text{ for } n \ge 0 \end{split}$$

$$\hat{\mathcal{G}}_{S}^{M}(\mathbf{k},\mathbf{k}',-\epsilon_{n}) = \left[\hat{\mathcal{G}}_{S}^{M}(\mathbf{k}',\mathbf{k},\epsilon_{n})\right]^{\dagger}$$

Temperature scaling of the Stokes tensor components

► For
$$1 - \frac{T}{T_c} \to 0^+$$
:
 $\frac{\eta_{\perp}}{\eta_{\rm N}} - 1 \propto -\Delta(T) \propto \sqrt{1 - \frac{T}{T_c}}$
 $\frac{\eta_{\rm AH}}{\eta_{\rm N}} \propto \Delta^2(T) \propto 1 - \frac{T}{T_c}$

For
$$\frac{T}{T_c} \to 0^+$$
:
 $\frac{\eta_{\perp}}{\eta_{\rm N}} \propto \left(\frac{T}{T_c}\right)^2$
 $\frac{\eta_{\rm AH}}{\eta_{\rm N}} \propto \left(\frac{T}{T_c}\right)^3$

Multiple Andreev Scattering ~>> Formation of Weyl fermions on *e*-bubbles

