# Signatures of Majorana-Weyl Fermions in Superfluid ${ }^{3} \mathrm{He}$ 

J. A. Sauls<br>Northwestern University

- Oleksii Shevtsov
- Parity violation
- Superfluid ${ }^{3} \mathrm{He}$
- Edge States \& Currents
- Electron Bubbles in ${ }^{3} \mathrm{He}$
- Anomalous Hall Effect
- Electron Transport in ${ }^{3} \mathrm{He}$


# The Left Hand of the Electron in Superfluid ${ }^{3} \mathrm{He}$ 

J. A. Sauls<br>Northwestern University

- Oleksii Shevtsov
- Parity violation
- Superfluid ${ }^{3} \mathrm{He}$
- Edge States \& Currents
- Electron Bubbles in ${ }^{3} \mathrm{He}$
- Anomalous Hall Effect
- Electron Transport in ${ }^{3} \mathrm{He}$

The Left Hand of the Electron, Issac Asimov, circa 1971

- An Essay on the Discovery of Parity Violation by the Weak Interaction

- ... And Reflections on Mirror Symmetry in Nature


## Parity Violation in Beta Decay of ${ }^{60}$ Co - Physical Review 105, 1413 (1957)

 Experimental Test of Parity Conservation in Beta Decay*C. S. Wu, Columbia University, New York, New York

AND
E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, National Bureau of Standards, Washington, D. C.
(Received January 15, 1957)


- T. D. Lee and C. N. Yang, Phys Rev 104, 204 (1956)

$$
{ }^{60} \mathrm{Co} \rightarrow{ }^{60} \mathrm{Ni}+e^{-}+\bar{\nu}
$$




- Current of Beta electrons is (anti) correlated with the Spin of the ${ }^{60} \mathrm{Co}$ nucleus.
$\langle\vec{S} \cdot \vec{p}\rangle \neq 0 \rightsquigarrow$ Parity violation

Realization of Broken Time-Reversal and Mirror Symmetry by the Vacuum State of ${ }^{3} \mathrm{He}$ Films

- Length Scale for Strong Confinement:
$\xi_{0}=\hbar v_{f} / 2 \pi k_{B} T_{c} \approx 20-80 \mathrm{~nm}$
- L. Levitov et al., Science 340, 6134 (2013)
- A. Vorontsov \& J. A. Sauls, PRL 98, 045301 (2007)


$$
\left(\begin{array}{ll}
\Psi_{\uparrow \uparrow} & \Psi_{\uparrow \downarrow} \\
\Psi_{\uparrow \downarrow} & \Psi_{\downarrow \downarrow}
\end{array}\right)_{A M}=\left(\begin{array}{cc}
p_{x}+i p_{y} \sim e^{+i \phi} & 0 \\
0 & p_{x}+i p_{y} \sim e^{+i \phi}
\end{array}\right)
$$

$$
\begin{gathered}
\mathrm{SO}(3)_{\mathrm{S}} \times \mathrm{SO}(3) \mathrm{L} \times \mathrm{U}(1)_{\mathrm{N}} \times \mathrm{T} \times \mathrm{P} \\
\Downarrow \\
\mathrm{SO}(2)_{\mathrm{S}} \times \mathrm{U}(1)_{\mathrm{N}-\mathrm{L}_{z}} \times \mathrm{Z}_{2}
\end{gathered}
$$

Ground-State Angular Momentum

$$
\left\langle\widehat{L}_{z}\right\rangle=\frac{N}{2} \hbar
$$

M. McClure and S. Takagi PRL 43, 596 (1979)

## Signatures of Broken T and P Symmetry in ${ }^{3} \mathrm{He}-\mathrm{A}$

- Spontaneous Symmetry Breaking $\rightsquigarrow$ Emergent Topology of the ${ }^{3} \mathrm{He}-\mathrm{A}$ Ground State
- Chirality + Topology $\rightsquigarrow$ Weyl-Majorana Edge States $\rightsquigarrow$ Chiral Edge Currents
- Broken T and $\mathrm{P} \rightsquigarrow$ Anomalous Hall Effects in Chiral Superfluids, e.g. ${ }^{3} \mathrm{He}-\mathrm{A}$
- Confinement $\rightsquigarrow$ Edge State Hybridization and New Broken Symmetry Phases of ${ }^{3} \mathrm{He}$


## Real-Space vs. Momentum-Space Topology

Topology in Real Space

$$
\Psi(\mathbf{r})=|\Psi(r)| e^{i \vartheta(\mathbf{r})}
$$



$$
N_{C}=\frac{1}{2 \pi} \oint_{C} d \vec{l} \cdot \frac{1}{|\Psi|} \operatorname{lm}[\nabla \Psi] \in\{0, \pm 1, \pm 2, \ldots\}
$$

- Massless Fermions confined in the Vortex Core

Chiral Symmetry $\rightsquigarrow$
Topology in Momentum Space $\Psi(\mathbf{p})=\Delta\left(p_{x} \pm i p_{y}\right) \sim e^{ \pm i \varphi_{\mathbf{p}}}$


Topological Quantum Number: $L_{z}= \pm 1$

$$
N_{2 \mathrm{D}}=\frac{1}{2 \pi} \oint d \mathbf{p} \cdot \frac{1}{|\Psi(\mathbf{p})|} \operatorname{lm}\left[\nabla_{\mathbf{p}} \Psi(\mathbf{p})\right]=L_{z}
$$

- Massless Chiral Fermions
- Nodal Fermions in 3D
- Edge Fermions in 2D

Massless Chiral Fermions in the 2D ${ }^{3} \mathrm{He}-\mathrm{A}$ Films
Edge Fermions: $G_{\text {edge }}^{\mathrm{R}}(\mathbf{p}, \varepsilon ; x)=\frac{\pi \Delta\left|\mathbf{p}_{x}\right|}{\varepsilon+i \gamma-\varepsilon_{\mathrm{bs}}\left(\mathbf{p}_{\| \mid}\right)} e^{-x / \xi_{\Delta}}$

$$
\xi_{\Delta}=\hbar v_{f} / 2 \Delta \approx 10^{2} \stackrel{\circ}{A} \gg \hbar / p_{f}
$$

- $\varepsilon_{\mathrm{bs}}=-c p_{\|}$with $c=\Delta / p_{f} \ll v_{f}$
- Broken P \& T $\rightsquigarrow$ Edge Current


Ground-State Angular Momentum of ${ }^{3} \mathrm{He}-\mathrm{A}$ in a Toroidal Geometry
${ }^{3} \mathrm{He}-\mathrm{A}$ confined in a toroidal cavity


$$
\triangleright R_{1}, R_{2}, R_{1}-R_{2} \gg \xi_{0}
$$

- Sheet Current: $J=\frac{1}{4} n \hbar \quad\left(n=N / V={ }^{3}\right.$ He density)
- Counter-propagating Edge Currents: $J_{1}=-J_{2}=\frac{1}{4} n \hbar$
- Angular Momentum:

$$
L_{z}=2 \pi h\left(R_{1}^{2}-R_{2}^{2}\right) \times \frac{1}{4} n \hbar=(N / 2) \hbar \quad \text { McClure-Takagi's Global Symmetry Result PRL 43, } 596 \text { (1979) }
$$

Long-Standing Challenge: Detect the Ground-State Angular Momentum of ${ }^{3} \mathrm{He}-\mathrm{A}$
Possible Gyroscopic Experiment to Measure of $L_{z}(T)$

- Hyoungsoon Choi (KAIST) [micro-mechanical gyroscope © $200 \mu \mathrm{~K}$ ]



## Thermal Signature of Massless Chiral Fermions

-Power Law for $T \lesssim 0.5 T_{c}$

$$
L_{z}=(N / 2) \hbar\left(1-c(T / \Delta)^{2}\right)
$$

Toroidal Geometry with Engineered Surfaces

- Incomplete Screening

$$
L_{z}>(N / 2) \hbar
$$

## Direct Signature of Edge Currents

Y. Tsutsumi, K. Machida, JPSJ 81, 074607 (2012)

## Anomalous Hall Effect for Electrons in Chiral Superfluid ${ }^{3} \mathrm{He}$

Chiral Edge Current Circulating a Hole or Defect in a Chiral Superfluid


- $R \gg \xi_{0} \approx 100 \mathrm{~nm}$
- Sheet Current :

$$
J \equiv \int d x J_{\varphi}(x)
$$

- Quantized Sheet Current: $\frac{1}{4} n \hbar \quad\left(n=N / V={ }^{3} \mathrm{He}\right.$ density $)$
- Edge Current Counter-Circulates: $J=-\frac{1}{4} n \hbar \quad$ w.r.t. Chirality: $\hat{\mathrm{l}}=+\mathbf{z}$
- Angular Momentum: $L_{z}=2 \pi h R^{2} \times\left(-\frac{1}{4} n \hbar\right)=-\left(N_{\text {hole }} / 2\right) \hbar$

$$
N_{\text {hole }}=\text { Number of }{ }^{3} \mathrm{He} \text { atoms excluded from the Hole }
$$

An object in ${ }^{3} \mathrm{He}-\mathrm{A}$ inherits angular momentum from the Condensate of Chiral Pairs!

## Electron bubbles in the Normal Fermi liquid phase of ${ }^{3} \mathrm{He}$



- Bubble with $R \simeq 1.5 \mathrm{~nm}$, $0.1 \mathrm{~nm} \simeq \lambda_{f} \ll R \ll \xi_{0} \simeq 80 \mathrm{~nm}$
- Effective mass $M \simeq 100 m_{3}$ ( $m_{3}$ - atomic mass of ${ }^{3} \mathrm{He}$ )
- QPs mean free path $l \gg R$
- Mobility of ${ }^{3} \mathrm{He}$ is independent of $T$ for $T_{c}<T<50 \mathrm{mK}$
B. Josephson and J. Leckner, PRL 23, 111 (1969)

Electron bubbles in chiral superfluid ${ }^{3} \mathrm{He}-\mathrm{A}$



- Current: $\mathbf{v}=\overbrace{\mu_{\perp} \mathcal{E}}^{\mathbf{V} \mathcal{E}}+\overbrace{\mu_{\mathrm{AH}} \mathcal{E} \times \hat{\mathbf{l}}}^{\mathbf{V}_{\mathrm{AH}}}$ R. Salmelin, M. Salomaa \& V. Mineev, PRL 63, 868 (1989)
- Hall ratio: $\quad \tan \alpha=v_{\mathrm{AH}} / v_{\mathcal{E}}=\left|\mu_{\mathrm{AH}} / \mu_{\perp}\right|$


## Mobility of Electron Bubbles in ${ }^{3} \mathrm{He}-\mathrm{A}$



Electric current: $\mathbf{v}=\overbrace{\mu_{\perp} \mathcal{E}}^{\mathbf{v} \mathcal{E}}+\overbrace{\mu_{\mathrm{AH}} \mathcal{E} \times \hat{\mathbf{l}}}^{\mathbf{v}_{\mathrm{AH}}}$


- Hall ratio: $\tan \alpha=v_{\mathrm{AH}} / v_{\mathcal{E}}=\left|\mu_{\mathrm{AH}} / \mu_{\perp}\right|$


H. Ikegami et al., Science 341, 59 (2013); JPSJ 82, 124607 (2013); JPSJ 84, 044602 (2015)


## Forces on the Electron bubble in ${ }^{3} \mathrm{He}-\mathrm{A}$ :

- $M \frac{d \mathbf{v}}{d t}=e \mathcal{E}+\mathbf{F}_{\mathrm{QP}}, \quad \mathbf{F}_{Q P}$ - force from quasiparticle collisions
- $\mathbf{F}_{Q P}=-\overleftrightarrow{\eta} \cdot \mathbf{v}, \stackrel{\leftrightarrow}{\eta}$ - generalized Stokes tensor
- $\stackrel{\leftrightarrow}{\eta}=\left(\begin{array}{ccc}\eta_{\perp} & \eta_{\text {AH }} & 0 \\ -\eta_{\text {AH }} & \eta_{\perp} & 0 \\ 0 & 0 & \eta_{\|}\end{array}\right)$for chiral symmetry with $\hat{\mathbf{l}} \| \mathbf{e}_{z}$
- $M \frac{d \mathbf{v}}{d t}=e \mathcal{E}-\eta_{\perp} \mathbf{v}+\frac{e}{c} \mathbf{v} \times \mathbf{B}_{\text {eff }}, \quad$ for $\mathcal{E} \perp \hat{\mathbf{l}}$
- $\mathbf{B}_{\text {eff }}=-\frac{c}{e} \eta_{\text {AH }} \hat{\mathbf{l}} \quad B_{\text {eff }} \simeq 10^{3}-10^{4} \mathrm{~T}$
- Mobility: $\frac{d \mathbf{v}}{d t}=0 \quad \rightsquigarrow \quad \mathbf{v}=\overleftrightarrow{\mu} \mathcal{E}, \quad$ where $\overleftrightarrow{\mu}=e \overleftrightarrow{\eta}^{-1}$

T-matrix description of Quasiparticle-Ion scattering


- Lippmann-Schwinger equation for the $T$-matrix $\left(\varepsilon=E+i \eta ; \eta \rightarrow 0^{+}\right)$:
$\hat{T}_{S}^{R}\left(\mathbf{k}^{\prime}, \mathbf{k}, E\right)=\hat{T}_{N}^{R}\left(\mathbf{k}^{\prime}, \mathbf{k}\right)+\int \frac{d^{3} k^{\prime \prime}}{(2 \pi)^{3}} \hat{T}_{N}^{R}\left(\mathbf{k}^{\prime}, \mathbf{k}^{\prime \prime}\right)\left[\hat{G}_{S}^{R}\left(\mathbf{k}^{\prime \prime}, E\right)-\hat{G}_{N}^{R}\left(\mathbf{k}^{\prime \prime}, E\right)\right] \hat{T}_{S}^{R}\left(\mathbf{k}^{\prime \prime}, \mathbf{k}, E\right)$
$\hat{G}_{S}^{R}(\mathbf{k}, E)=\frac{1}{\varepsilon^{2}-E_{\mathbf{k}}^{2}}\left(\begin{array}{cc}\varepsilon+\xi_{k} & -\Delta(\hat{\mathbf{k}}) \\ -\Delta^{\dagger}(\hat{\mathbf{k}}) & \varepsilon-\xi_{k}\end{array}\right), \quad E_{\mathbf{k}}=\sqrt{\xi_{k}^{2}+|\Delta(\hat{\mathbf{k}})|^{2}}, \quad \xi_{k}=\frac{\hbar^{2} k^{2}}{2 m^{*}}-\mu$
- Normal-state $T$-matrix:
$\hat{T}_{N}^{R}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)=\left(\begin{array}{cc}t_{N}^{R}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right) & 0 \\ 0 & -\left[t_{N}^{R}\left(-\hat{\mathbf{k}}^{\prime},-\hat{\mathbf{k}}\right)\right]^{\dagger}\end{array}\right) \quad$ in p-h (Nambu) space, where
$t_{N}^{R}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)=-\frac{1}{\pi N_{f}} \sum_{l=0}^{\infty}(2 l+1) e^{i \delta_{l}} \sin \delta_{l} P_{l}\left(\hat{\mathbf{k}}^{\prime} \cdot \hat{\mathbf{k}}\right), \quad P_{l}(x)-$ Legendre function
- Hard-sphere potential $\rightsquigarrow \tan \delta_{l}=j_{l}\left(k_{f} R\right) / n_{l}\left(k_{f} R\right)$ - spherical Bessel functions
- $k_{f} R$ - determined by the Normal-State Mobility

Weyl Fermion Spectrum bound to the Electron Bubble

$$
\mu_{\mathrm{N}}=\frac{e}{n_{3} p_{f} \sigma_{\mathrm{N}}^{\text {tr }}} \Leftarrow \mu_{\mathrm{N}}^{\exp }=1.7 \times 10^{-6} \frac{m^{2}}{V s}
$$

$$
\tan \delta_{l}=j_{l}\left(k_{f} R\right) / n_{l}\left(k_{f} R\right) \Rightarrow \sigma_{\mathrm{N}}^{\mathrm{tr}}=\frac{4 \pi}{k_{f}^{2}} \sum_{l=0}^{\infty}(l+1) \sin ^{2}\left(\delta_{l+1}-\delta_{l}\right) \rightsquigarrow \quad k_{f} R=11.17
$$




Current bound to an electron bubble $\left(k_{f} R=11.17\right)$

$\mathbf{j}(\mathbf{r}) / v_{f} N_{f} k_{B} T_{c}=j_{\phi}(\mathbf{r}) \hat{\mathbf{e}}_{\phi}$

- O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

$$
\mathbf{L}(T \rightarrow 0) \approx-\hbar N_{\text {bubble }} / 2 \hat{\mathbf{l}} \approx-100 \hbar \hat{\mathbf{1}}
$$

Determination of the Stokes Tensor from the QP-Ion T-matrix
(i) Fermi's golden rule and the QP scattering rate:
$\Gamma\left(\mathbf{k}^{\prime}, \mathbf{k}\right)=\frac{2 \pi}{\hbar} W\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right) \delta\left(E_{\mathbf{k}^{\prime}}-E_{\mathbf{k}}\right), W\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)=\frac{1}{2} \sum_{\tau^{\prime} \sigma^{\prime} ; \tau \sigma}|\overbrace{\left\langle\mathbf{k}^{\prime}, \sigma^{\prime}, \tau^{\prime}\right|}^{\text {outgoing }} \hat{T}_{S} \overbrace{\mathbf{k}, \sigma, \tau\rangle}^{\text {incoming }}|^{2}$
(ii) Drag force from QP-ion collisions (linear in v): D Baym et al. PRL 22, 20 (1969)
$\mathbf{F}_{\mathrm{QP}}=-\sum_{\mathbf{k}, \mathbf{k}^{\prime}} \hbar\left(\mathbf{k}^{\prime}-\mathbf{k}\right)\left[\hbar \mathbf{k}^{\prime} \mathbf{v} f_{\mathbf{k}}\left(-\frac{\partial f_{\mathbf{k}^{\prime}}}{\partial E}\right)-\hbar \mathbf{k} \mathbf{v}\left(1-f_{\mathbf{k}^{\prime}}\right)\left(-\frac{\partial f_{\mathbf{k}}}{\partial E}\right)\right] \Gamma\left(\mathbf{k}^{\prime}, \mathbf{k}\right)$
(iii) Microscopic reversibility condition: $W\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}:+\mathbf{l}\right)=W\left(\hat{\mathbf{k}}, \hat{\mathbf{k}}^{\prime}:-\mathbf{l}\right)$

Broken T and mirror symmetries in ${ }^{3} \mathrm{He}-\mathrm{A} \Rightarrow$ fixed $\hat{\mathbf{l}} \rightsquigarrow W\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right) \neq W\left(\hat{\mathbf{k}}, \hat{\mathbf{k}}^{\prime}\right)$
(iv) Generalized Stokes tensor:
$\mathbf{F}_{\mathrm{QP}}=-\overleftrightarrow{\eta} \cdot \mathbf{v} \rightsquigarrow \eta_{i j}=n_{3} p_{f} \int_{0}^{\infty} d E\left(-2 \frac{\partial f}{\partial E}\right) \sigma_{i j}(E) \quad, \stackrel{\leftrightarrow}{\eta}=\left(\begin{array}{ccc}\eta_{\perp} & \eta_{\mathrm{AH}} & 0 \\ -\eta_{\mathrm{AH}} & \eta_{\perp} & 0 \\ 0 & 0 & \eta_{\|}\end{array}\right)$
$n_{3}=\frac{k_{f}^{3}}{3 \pi^{2}}-{ }^{3}$ He particle density, $\quad \sigma_{i j}(E)$ - transport scattering cross section,

$$
f(E)=\left[\exp \left(E / k_{B} T\right)+1\right]^{-1}-\text { Fermi Distribution }
$$

Mirror-symmetric scattering $\Rightarrow$ longitudinal drag force

$$
\mathbf{F}_{\mathbf{Q P}}=-\overleftrightarrow{\eta} \cdot \mathbf{v}, \quad \eta_{i j}=n_{3} p_{f} \int_{0}^{\infty} d E\left(-2 \frac{\partial f}{\partial E}\right) \sigma_{i j}(E)
$$

Subdivide by mirror symmetry:
$W\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)=W^{(+)}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)+W^{(-)}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)$,
$\sigma_{i j}(E)=\sigma_{i j}^{(+)}(E)+\sigma_{i j}^{(-)}(E)$,

$\sigma_{i j}^{(+)}(E)=\frac{3}{4} \int_{E \geq\left|\Delta\left(\hat{\mathbf{k}}^{\prime}\right)\right|} d \Omega_{\mathbf{k}^{\prime}} \int_{E \geq|\Delta(\hat{\mathbf{k}})|} \frac{d \Omega_{\mathbf{k}}}{4 \pi}\left[\left(\hat{\mathbf{k}}_{i}^{\prime}-\hat{\mathbf{k}}_{i}\right)\left(\hat{\mathbf{k}}_{j}^{\prime}-\hat{\mathbf{k}}_{j}\right)\right] \frac{d \sigma^{(+)}}{d \Omega_{\mathbf{k}^{\prime}}}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}} ; E\right)$
Mirror-symmetric cross section: $\quad W^{(+)}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)=\left[W\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)+W\left(\hat{\mathbf{k}}, \hat{\mathbf{k}}^{\prime}\right)\right] / 2$

$$
\frac{d \sigma^{(+)}}{d \Omega_{\mathbf{k}^{\prime}}}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}} ; E\right)=\left(\frac{m^{*}}{2 \pi \hbar^{2}}\right)^{2} \frac{E}{\sqrt{E^{2}-\left|\Delta\left(\hat{\mathbf{k}}^{\prime}\right)\right|^{2}}} W^{(+)}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right) \frac{E}{\sqrt{E^{2}-|\Delta(\hat{\mathbf{k}})|^{2}}}
$$

$\rightsquigarrow$ Stokes Drag $\eta_{x x}^{(+)}=\eta_{y y}^{(+)} \equiv \eta_{\perp}, \eta_{z z}^{(+)} \equiv \eta_{\|}$, No transverse force $\left[\eta_{i j}^{(+)}\right]_{i \neq j}=0$

## Mirror-antisymmetric scattering $\Rightarrow$ transverse force

$$
\mathbf{F}_{\mathrm{QP}}=-\overleftrightarrow{\eta} \cdot \mathbf{v}, \quad \eta_{i j}=n_{3} p_{f} \int_{0}^{\infty} d E\left(-2 \frac{\partial f}{\partial E}\right) \sigma_{i j}(E)
$$

Subdivide by mirror symmetry:

$$
\begin{aligned}
& W\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)=W^{(+)}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)+W^{(-)}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right), \\
& \sigma_{i j}(E)=\sigma_{i j}^{(+)}(E)+\sigma_{i j}^{(-)}(E)
\end{aligned}
$$



$$
\sigma_{i j}^{(-)}(E)=\frac{3}{4} \int_{E \geq\left|\Delta\left(\hat{\mathbf{k}}^{\prime}\right)\right|} d \Omega_{\mathbf{k}^{\prime}} \int_{E \geq|\Delta(\hat{\mathbf{k}})|} \frac{d \Omega_{\mathbf{k}}}{4 \pi}\left[\epsilon_{i j k}\left(\hat{\mathbf{k}}^{\prime} \times \hat{\mathbf{k}}\right)_{k}\right] \frac{d \sigma^{(-)}}{d \Omega_{\mathbf{k}^{\prime}}}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}} ; E\right)\left[f(E)-\frac{1}{2}\right]
$$

Mirror-antisymmetric cross section: $\quad W^{(-)}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)=\left[W\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right)-W\left(\hat{\mathbf{k}}, \hat{\mathbf{k}}^{\prime}\right)\right] / 2$
$\frac{d \sigma^{(-)}}{d \Omega_{\mathbf{k}^{\prime}}}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}} ; E\right)=\left(\frac{m^{*}}{2 \pi \hbar^{2}}\right)^{2} \frac{E}{\sqrt{E^{2}-\left|\Delta\left(\hat{\mathbf{k}}^{\prime}\right)\right|^{2}}} W^{(-)}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}}\right) \frac{E}{\sqrt{E^{2}-|\Delta(\hat{\mathbf{k}})|^{2}}}$
Transverse force $\quad \eta_{x y}^{(-)}=-\eta_{y x}^{(-)} \equiv \eta_{\mathrm{AH}} \quad \Rightarrow \quad$ anomalous Hall effect

Differential cross section for Bogoliubov QP-Ion Scattering $k_{f} R=11.17$


- O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

Theoretical Results for the Drag and Transverse Forces


- $\Delta p_{x} \approx p_{f} \quad \sigma_{x x}^{\mathrm{tr}} \approx \sigma_{\mathrm{N}}^{\mathrm{tr}} \approx \pi R^{2}$
- $F_{x} \approx n v_{x} \Delta p_{x} \sigma_{x x}^{\mathrm{tr}}$

$$
\approx n v_{x} p_{f} \sigma_{\mathrm{N}}^{\mathrm{tr}}
$$



- $\Delta p_{y} \approx \hbar / R \sigma_{x y}^{\mathrm{tr}} \approx\left(\Delta(T) / k_{\mathrm{B}} T_{c}\right)^{2} \sigma_{\mathrm{N}}^{\mathrm{tr}}$
- $F_{y} \approx n v_{x} \Delta p_{y} \sigma_{x y}^{\mathrm{tr}}$

$$
\approx n v_{x}(\hbar / R) \sigma_{\mathrm{N}}^{\mathrm{tr}}\left(\Delta(T) / k_{\mathrm{B}} T_{c}\right)^{2}
$$

$$
\left|F_{y} / F_{x}\right| \approx \frac{\hbar}{p_{f} R}\left(\Delta(T) / k_{B} T_{c}\right)^{2}
$$

$k_{f} R=11.17$
Branch Conversion Scattering

- O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

Comparison between Theory and Experiment for the Drag and Transverse Forces


## Summary

- Electrons in ${ }^{3} \mathrm{He}-\mathrm{A}$ are "dressed" by a spectrum of Weyl Fermions
- Electrons in ${ }^{3} \mathrm{He}-\mathrm{A}$ are "Left handed" in a Right-handed Chiral Vacuum $\rightsquigarrow L_{z} \approx-\left(N_{\text {bubble }} / 2\right) \hbar \approx-100 \hbar$
- Experiment: RIKEN mobility experiments $\rightsquigarrow$ Observation an AHE in ${ }^{3} \mathrm{He}-\mathrm{A}$
- Scattering of Bogoliubov QPs by the dressed Ion $\rightsquigarrow$ Drag Force $\left(-\eta_{\perp} \mathbf{v}\right)$ and Transverse Force $\left(\frac{e}{c} \mathbf{v} \times \mathbf{B}_{e f f}\right)$ on the Ion
- Anomalous Hall Field: $\mathbf{B}_{\text {eff }} \approx \frac{\Phi_{0}}{3 \pi^{2}} k_{f}^{2}\left(k_{f} R\right)^{2}\left(\frac{\eta_{\text {АН }}}{\eta_{\mathrm{N}}}\right) \mathbf{l} \simeq 10^{3}-10^{4} \mathrm{~T} \mathbf{l}$
- Mechanism: Skew/Andreev Scattering of Bogoliubov QPs by the dressed Ion
- Origin: Broken Mirror \& Time-Reversal Symmetry $\rightsquigarrow W\left(\mathbf{k}, \mathbf{k}^{\prime}\right) \neq W\left(\mathbf{k}^{\prime}, \mathbf{k}\right)$
- Theory: $\rightsquigarrow$ Quantitative account of RIKEN mobility experiments
- New directions for Transport in ${ }^{3} \mathrm{He}-\mathrm{A} \&$ Chiral Superconductors

Anomalous Hall and Thermal Hall Effects in Chiral Superconductors: $\mathrm{UPt}_{3} \& \mathrm{Sr}_{2} \mathrm{RuO}_{4}$

Comparison between Theory and Experiment for the Drag and Transverse Forces


## Theoretical Models for the QP-ion potential

- $U(r)= \begin{cases}U_{0}, & r<R, \\ -U_{1}, & R<r<R^{\prime}, \\ 0, & r>R^{\prime} .\end{cases}$
- $\rightsquigarrow$ Hard-Sphere Potential: $U_{1}=0, R^{\prime}=R, U_{0} \rightarrow \infty$
- $U(x)=U_{0}[1-\tanh [(x-b) / c]], \quad x=k_{f} r$
- $U(x)=U_{0} / \cosh ^{2}\left[\alpha x^{n}\right], \quad x=k_{f} r \quad$ (Pöschl-Teller-like potential)
- Random phase shifts: $\left\{\delta_{l} \mid l=1 \ldots l_{\max }\right\}$ are generated with $\delta_{0}$ is an adjustable parameter
- Parameters for all models are chosen to fit the experimental value of the normal-state mobility, $\mu_{N}^{\exp }=1.7 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{V} \cdot \mathrm{s}$


## Theoretical Models for the QP-ion potential

| Label | Potential | Parameters |
| :--- | :--- | :--- |
| Model A | hard sphere | $k_{f} R=11.17$ |
| Model B | repulsive core \& attractive well | $U_{0}=100 E_{f}, U_{1}=10 E_{f}, k_{f} R^{\prime}=11, R / R^{\prime}=0.36$ |
| Model C | random phase shifts model 1 | $l_{\max }=11$ |
| Model D | random phase shifts model 2 | $l_{\max }=11$ |
| Model E | Pöschl-Teller-like | $U_{0}=1.01 E_{f}, k_{f} R=22.15, \alpha=3 \times 10^{-5}, n=4$ |
| Model F | Pöschl-Teller-like | $U_{0}=2 E_{f}, k_{f} R=19.28, \alpha=6 \times 10^{-5}, n=4$ |
| Model G | hyperbolic tangent | $U_{0}=1.01 E_{f}, k_{f} R=14.93, b=12.47, c=0.246$ |
| Model H | hyperbolic tangent | $U_{0}=2 E_{f}, k_{f} R=14.18, b=11.92, c=0.226$ |
| Model I | soft sphere 1 | $U_{0}=1.01 E_{f}, k_{f} R=12.48$ |
| Model J | soft sphere 2 | $U_{0}=2 E_{f}, k_{f} R=11.95$ |

Hard-sphere model with $k_{f} R=11.17$ (Model A)





## Comparison with Experiment for Models for the QP-ion potential

| Label | Potential | Parameters |
| :--- | :--- | :--- |
| Model A | hard sphere | $k_{f} R=11.17$ |
| Model B | attractive well with a repulsive core | $U_{0}=100 E_{f}, U_{1}=10 E_{f}, k_{f} R^{\prime}=11, R / R^{\prime}=0.36$ |
| Model C | random phase shifts model 1 | $l_{\max }=11$ |
| Model D | random phase shifts model 2 | $l_{\max }=11$ |
| Model E | Pöschl-Teller-like | $U_{0}=1.01 E_{f}, k_{f} R=22.15, \alpha=3 \times 10^{-5}, n=4$ |
| Model F | Pöschl-Teller-like | $U_{0}=2 E_{f}, k_{f} R=19.28, \alpha=6 \times 10^{-5}, n=4$ |








## Stabilizing the A-phase at Low Temperatures



## Magnetic field B:

- suppresses $|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle$ Cooper pairs:
$\rightsquigarrow$ disfavors the B-phase
- favors the chiral, $p_{x}+i p_{y}$, A-phase with: $((1+\eta B)|\uparrow \uparrow\rangle+(1-\eta B)|\downarrow \downarrow\rangle)$
- critical field: $B_{c}(0) \approx 0.3 \mathrm{~T}$

Topological Edge states:


## Calculation of LDOS and Current Density

$$
\begin{aligned}
& \hat{\mathcal{G}}_{S}^{R}\left(\mathbf{r}^{\prime}, \mathbf{r}, E\right)=\int \frac{d^{3} k}{(2 \pi)^{3}} \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} e^{i \mathbf{k}^{\prime} \mathbf{r}^{\prime}} e^{-i \mathbf{k r}} \hat{\mathcal{G}}_{S}^{R}\left(\mathbf{k}^{\prime}, \mathbf{k}, E\right) \\
& \hat{\mathcal{G}}_{S}^{R}\left(\mathbf{k}^{\prime}, \mathbf{k}, E\right)=(2 \pi)^{3} \hat{G}_{S}^{R}(\mathbf{k}, E) \delta_{\mathbf{k}^{\prime}, \mathbf{k}}+\hat{G}_{S}^{R}\left(\mathbf{k}^{\prime}, E\right) \hat{T}_{S}\left(\mathbf{k}^{\prime}, \mathbf{k}, E\right) \hat{G}_{S}^{R}(\mathbf{k}, E) \\
& \hat{G}_{S}^{R}(\mathbf{k}, E)=\frac{1}{\varepsilon^{2}-E_{\mathbf{k}}^{2}}\left(\begin{array}{cc}
\varepsilon+\xi_{k} & -\Delta(\hat{\mathbf{k}}) \\
-\Delta^{\dagger}(\hat{\mathbf{k}}) & \varepsilon-\xi_{k}
\end{array}\right), \quad \varepsilon=E+i \eta, \eta \rightarrow 0^{+} \\
& N(\mathbf{r}, E)=-\frac{1}{2 \pi} \operatorname{Im}\left\{\operatorname{Tr}\left[\hat{\mathcal{G}}_{S}^{R}(\mathbf{r}, \mathbf{r}, E)\right]\right\} \\
& \mathbf{j}(\mathbf{r})=\frac{\hbar}{4 m i} k_{B} T \sum_{n=-\infty}^{\infty} \lim _{\mathbf{r} \rightarrow \mathbf{r}^{\prime}} \operatorname{Tr}\left[\left(\boldsymbol{\nabla}_{\mathbf{r}^{\prime}}-\boldsymbol{\nabla}_{\mathbf{r}}\right) \hat{\mathcal{G}}^{M}\left(\mathbf{r}^{\prime}, \mathbf{r}, \epsilon_{n}\right)\right] \\
& \hat{\mathcal{G}}_{S}^{R}\left(\mathbf{r}^{\prime}, \mathbf{r}, E\right)=\left.\hat{\mathcal{G}}_{S}^{M}\left(\mathbf{r}^{\prime}, \mathbf{r}, \epsilon_{n}\right)\right|_{i \epsilon_{n} \rightarrow \varepsilon}, \text { for } n \geq 0 \\
& \hat{\mathcal{G}}_{S}^{M}\left(\mathbf{k}, \mathbf{k}^{\prime},-\epsilon_{n}\right)=\left[\hat{\mathcal{G}}_{S}^{M}\left(\mathbf{k}^{\prime}, \mathbf{k}, \epsilon_{n}\right)\right]^{\dagger}
\end{aligned}
$$

## Broken Time-Reversal (T) \& mirror $\left(\Pi_{m}\right)$ symmetries in Chiral Superfluids



- Broken TRS: $\mathrm{T} \cdot\left(\hat{p}_{x}+i \hat{p}_{y}\right)=\left(\hat{p}_{x}-i \hat{p}_{y}\right)$
- Broken mirror symmetry: $\Pi_{\mathrm{m}} \cdot\left(\hat{p}_{x}+i \hat{p}_{y}\right)=\left(\hat{p}_{x}-i \hat{p}_{y}\right)$
- Chiral symmetry: $\mathrm{C}=\mathrm{T} \times \Pi_{\mathrm{m}} \quad \rightsquigarrow \quad \mathrm{C} \cdot\left(\hat{p}_{x}+i \hat{p}_{y}\right)=\left(\hat{p}_{x}+i \hat{p}_{y}\right)$
- Microscopic reversibility for chiral superfluids: $W\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}} ;+\hat{\mathbf{l}}\right)=W\left(\hat{\mathbf{k}}, \hat{\mathbf{k}}^{\prime} ;-\hat{\mathbf{l}}\right)$
$\therefore$ For BTRS: the chiral axis $\hat{1}$ is fixed $\rightsquigarrow$

$$
W\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}} ; \hat{\mathbf{l}}\right) \neq W\left(\hat{\mathbf{k}}, \hat{\mathbf{k}}^{\prime} ; \hat{\mathbf{l}}\right)
$$

## Determination of the Electron Bubble Radius

(i) Energy required to create a bubble:

$$
E(R, P)=E_{0}\left(U_{0}, R\right)+4 \pi R^{2} \gamma+\frac{4 \pi}{3} R^{3} P, \quad P-\text { pressure }
$$

(ii) For $U_{0} \rightarrow \infty$ : $\quad E_{0}=-U_{0}+\pi^{2} \hbar^{2} / 2 m_{e} R^{2}-$ ground state energy
(iii) Surface Energy: hydrostatic surface tension $\rightsquigarrow \gamma=0.15 \mathrm{erg} / \mathrm{cm}^{2}$
(iv) Minimizing E w.r.t. $R \rightsquigarrow P=\pi \hbar^{2} / 4 m_{e} R^{5}-2 \gamma / R$
(v) For zero pressure, $P=0$ :

$$
\begin{aligned}
& R=\left(\frac{\pi \hbar^{2}}{8 m_{e} \gamma}\right)^{1 / 4} \approx 2.38 \mathrm{~nm} \quad \rightsquigarrow \quad k_{f} R=18.67 \\
& \text { Transport } \rightsquigarrow k_{f} R=11.17
\end{aligned}
$$

- A. Ahonen et al., J. Low Temp. Phys., 30(1):205228, 1978

Angular momentum of an electron bubble in ${ }^{3} \mathrm{He}-\mathrm{A}\left(k_{f} R=11.17\right)$

$$
\mathbf{L}(T \rightarrow 0) \approx-\hbar N_{\text {bubble }} \hat{\mathbf{l}} / 2 ; \quad N_{\text {bubble }}=n_{3} \frac{4 \pi}{3} R^{3} \approx 200{ }^{3} \mathrm{He} \text { atoms }
$$



Mobility of an electron bubble in the Normal Fermi Liquid
(i) $t_{N}^{R}\left(\hat{\mathbf{k}}^{\prime}, \hat{\mathbf{k}} ; E\right)=\sum_{l=0}^{\infty}(2 l+1) t_{l}^{R}(E) P_{l}\left(\hat{\mathbf{k}}^{\prime} \cdot \hat{\mathbf{k}}\right)$
(ii) $t_{l}^{R}(E)=-\frac{1}{\pi N_{f}} e^{i \delta_{l}} \sin \delta_{l}$
(iii) $\frac{d \sigma}{d \Omega_{\mathbf{k}^{\prime}}}=\left(\frac{m^{*}}{2 \pi \hbar^{2}}\right)^{2}\left|t_{N}^{R}\left(\hat{\mathbf{k}^{\prime}}, \hat{\mathbf{k}} ; E\right)\right|^{2}$
(iv) $\sigma_{N}^{t r}=\int \frac{d \Omega_{\mathbf{k}^{\prime}}}{4 \pi}\left(1-\hat{\mathbf{k}} \cdot \hat{\mathbf{k}}^{\prime}\right) \frac{d \sigma}{d \Omega_{\mathbf{k}^{\prime}}}=\frac{4 \pi}{k_{f}^{2}} \sum_{l=0}^{\infty}(l+1) \sin ^{2}\left(\delta_{l+1}-\delta_{l}\right)$
(v) $\mu_{\mathrm{N}}=\frac{e}{n_{3} p_{f} \sigma_{\mathrm{N}}^{\mathrm{N}}}, \quad p_{f}=\hbar k_{f}, \quad n_{3}=\frac{k_{f}^{3}}{3 \pi^{2}}$

## Calculation of LDOS and Current Density

$$
\begin{aligned}
& \hat{\mathcal{G}}_{S}^{R}\left(\mathbf{r}^{\prime}, \mathbf{r}, E\right)=\int \frac{d^{3} k}{(2 \pi)^{3}} \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} e^{i \mathbf{k}^{\prime} \mathbf{r}^{\prime}} e^{-i \mathbf{k r}} \hat{\mathcal{G}}_{S}^{R}\left(\mathbf{k}^{\prime}, \mathbf{k}, E\right) \\
& \hat{\mathcal{G}}_{S}^{R}\left(\mathbf{k}^{\prime}, \mathbf{k}, E\right)=(2 \pi)^{3} \hat{G}_{S}^{R}(\mathbf{k}, E) \delta_{\mathbf{k}^{\prime}, \mathbf{k}}+\hat{G}_{S}^{R}\left(\mathbf{k}^{\prime}, E\right) \hat{T}_{S}\left(\mathbf{k}^{\prime}, \mathbf{k}, E\right) \hat{G}_{S}^{R}(\mathbf{k}, E) \\
& \hat{G}_{S}^{R}(\mathbf{k}, E)=\frac{1}{\varepsilon^{2}-E_{\mathbf{k}}^{2}}\left(\begin{array}{cc}
\varepsilon+\xi_{k} & -\Delta(\hat{\mathbf{k}}) \\
-\Delta^{\dagger}(\hat{\mathbf{k}}) & \varepsilon-\xi_{k}
\end{array}\right), \quad \varepsilon=E+i \eta, \eta \rightarrow 0^{+} \\
& N(\mathbf{r}, E)=-\frac{1}{2 \pi} \operatorname{Im}\left\{\operatorname{Tr}\left[\hat{\mathcal{G}}_{S}^{R}(\mathbf{r}, \mathbf{r}, E)\right]\right\} \\
& \mathbf{j}(\mathbf{r})=\frac{\hbar}{4 m i} k_{B} T \sum_{n=-\infty}^{\infty} \lim _{\mathbf{r} \rightarrow \mathbf{r}^{\prime}} \operatorname{Tr}\left[\left(\boldsymbol{\nabla}_{\mathbf{r}^{\prime}}-\boldsymbol{\nabla}_{\mathbf{r}}\right) \hat{\mathcal{G}}^{M}\left(\mathbf{r}^{\prime}, \mathbf{r}, \epsilon_{n}\right)\right] \\
& \hat{\mathcal{G}}_{S}^{R}\left(\mathbf{r}^{\prime}, \mathbf{r}, E\right)=\left.\hat{\mathcal{G}}_{S}^{M}\left(\mathbf{r}^{\prime}, \mathbf{r}, \epsilon_{n}\right)\right|_{i \epsilon_{n} \rightarrow \varepsilon}, \text { for } n \geq 0 \\
& \hat{\mathcal{G}}_{S}^{M}\left(\mathbf{k}, \mathbf{k}^{\prime},-\epsilon_{n}\right)=\left[\hat{\mathcal{G}}_{S}^{M}\left(\mathbf{k}^{\prime}, \mathbf{k}, \epsilon_{n}\right)\right]^{\dagger}
\end{aligned}
$$

## Temperature scaling of the Stokes tensor components

- For $1-\frac{T}{T_{c}} \rightarrow 0^{+}$:

$$
\begin{aligned}
& \frac{\eta_{\perp}}{\eta_{\mathrm{N}}}-1 \propto-\Delta(T) \propto \sqrt{1-\frac{T}{T_{c}}} \\
& \frac{\eta_{\mathrm{AH}}}{\eta_{\mathrm{N}}} \propto \Delta^{2}(T) \propto 1-\frac{T}{T_{c}}
\end{aligned}
$$

- For $\frac{T}{T_{c}} \rightarrow 0^{+}$:

$$
\begin{aligned}
\frac{\eta_{\perp}}{\eta_{\mathrm{N}}} & \propto\left(\frac{T}{T_{c}}\right)^{2} \\
\frac{\eta_{\mathrm{AH}}}{\eta_{\mathrm{N}}} & \propto\left(\frac{T}{T_{c}}\right)^{3}
\end{aligned}
$$

Multiple Andreev Scattering $\rightsquigarrow$ Formation of Weyl fermions on $e$-bubbles

$\Delta(\hat{\mathbf{k}})=\Delta \sin \theta e^{i \phi}$

