TMS Intensive-Interactive Meeting, Keio University, November 17-18, 2016

Spontaneous Symmetry Breaking & Topological Order in Superfluid ³He

J. A. Sauls

Northwestern University Supported by National Science Foundation Grant DMR-1508730

Oleksii Shevtsov
Hao Wu • Joshua Wiman
Takeshi Mizushima (Osaka University)

- Spontaneous Symmetry Breaking in ³He
- Nambu-Goldstone & Higgs Modes
- Nambu's Fermion-Boson Mass Relation
- Topological Order in Chiral Superfluids
- Chiral Fermions & Edge Currents
- Anomalous Hall Effect in ³He-A

Ferromagnetic Spin Fluctuations \rightsquigarrow Odd-Parity. Spin-Triplet Pairing for ³He

A. Layzer and D. Fay, Int. J. Magn. 1, 135 (1971)

W. Brinkman, J. Serene, and P. Anderson, PRA 10, 2386 (1974)

Ginzburg-Landau Functional for Superfluid ³He

- ▶ Maximal Symmetry of ³He: $G = SO(3)_L \times SO(3)_S \times U(1)_N \times P \times T$
- Order Parameter for P-wave (L = 1), Spin-Triplet (S = 1) Pairing

$$\widehat{\Psi}(\widehat{p}) = \overbrace{\left(S_{\mathbf{x}} \quad S_{\mathbf{y}} \quad S_{\mathbf{z}}\right)}^{\text{Spin Basis}} \times \overbrace{\left(\begin{array}{c}A_{xx} \quad A_{xy} \quad A_{xz}\\A_{yx} \quad A_{yy} \quad A_{yz}\\A_{zx} \quad A_{zy} \quad A_{zz}\end{array}\right)}^{\text{Orbital Basis}} \times \overbrace{\left(\begin{array}{c}\widehat{p}_{x}\\\widehat{p}_{y}\\\widehat{p}_{z}\end{array}\right)}^{\text{Orbital Basis}}$$

► GL Functional: $A_{\alpha i} \rightsquigarrow$ vector under both SO(3)_s [α] and SO(3)_L [i]

$$\mathcal{U}[A] = \int d^3r \Big[\alpha(T) \operatorname{Tr} \Big\{ A A^{\dagger} \Big\} + \beta_1 |\operatorname{Tr} \{ A A^{\operatorname{tr}} \}|^2 + \beta_2 \left(\operatorname{Tr} \Big\{ A A^{\dagger} \Big\} \right)^2 + \beta_3 \operatorname{Tr} \{ A A^{\operatorname{tr}} (A A^{\operatorname{tr}})^* \} + \beta_4 \operatorname{Tr} \Big\{ (A A^{\dagger})^2 \Big\} + \beta_5 \operatorname{Tr} \Big\{ A A^{\dagger} (A A^{\dagger})^* \Big\} + \kappa_1 \partial_i A_{\alpha j} \partial_i A^*_{\alpha j} + \kappa_2 \partial_i A_{\alpha i} \partial_j A^*_{\alpha j} + \kappa_3 \partial_i A_{\alpha j} \partial_j A^*_{\alpha i} \Big]$$

New Bosonic Excitations

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

The CMS Collaboration

Higgs Boson with mass M = 125 GeV

Scalar Higgs Boson (spin J = 0) [P. Higgs, PRL 13, 508 1964]

Energy Functional for the Higgs Field

$$\mathcal{U}[\Delta] = \int dV \left\{ \frac{\alpha}{|\Delta|^2} + \frac{\beta}{|\Delta|^4} + \frac{1}{2}c^2 |\nabla \Delta|^2 \right\}$$

• Broken Symmetry State: $\Delta = \sqrt{|\alpha|/2\beta}$

Space-Time Fluctuations about the Broken Symmetry Vacuum State

$$\Delta(\mathbf{r},t) = \Delta + D(\mathbf{r},t)$$
 > Eigenmodes: $D^{(\pm)} = D \pm D^*$ (Conjugation Parity)

$$\mathcal{L} = \int d^3r \left\{ \frac{1}{2} [(\dot{D}^{(+)})^2 + (\dot{D}^{(-)})^2] - 2\Delta^2 (D^{(+)})^2 - \frac{1}{2} [c^2 (\boldsymbol{\nabla} D^{(+)})^2 + c^2 (\boldsymbol{\nabla} D^{(-)})^2] \right\}$$

$$\triangleright \ \partial_t^2 D^{(-)} - c^2 \nabla^2 D^{(-)} = 0$$

Massless Nambu-Goldstone Mode

$$\partial_t^2 D^{(+)} - c^2 \nabla^2 D^{(+)} + 4\Delta^2 D^{(+)} = 0$$
Massive Higgs Mode: $M = 2\Delta$

Dynamical Consequences of Spontaneous Symmetry Breaking BCS Condensation of Spin-Singlet (S = 0), S-wave (L = 0) "Scalar" Cooper Pairs

Ginzburg-Landau Functional

$$F[\Delta] = \int dV \left\{ \alpha |\Delta|^2 + \beta |\Delta|^4 + \kappa |\nabla \Delta|^2 \right\}$$

▶ Order Parameter: $\Delta = \sqrt{|\alpha|/2\beta}$

Space-Time Fluctuations of the Condensate Order Parameter

 $\Delta(\mathbf{r},t) = \Delta + D(\mathbf{r},t) \models \text{Eigenmodes: } D^{(\pm)} = D \pm D^* \text{ (Fermion "Charge" Parity)}$

$$\mathcal{L} = \int d^3r \left\{ \frac{1}{2} [(\dot{D}^{(+)})^2 + (\dot{D}^{(-)})^2] - 2\Delta^2 (D^{(+)})^2 - \frac{1}{2} [v^2 (\boldsymbol{\nabla} D^{(+)})^2 + v^2 (\boldsymbol{\nabla} D^{(-)})^2] \right\}$$

$$\triangleright \ \partial_t^2 D^{(-)} - v^2 \nabla^2 D^{(-)} = 0$$

Anderson-Bogoliubov Mode

► $\partial_t^2 D^{(+)} - v^2 \nabla^2 D^{(+)} + 4\Delta^2 D^{(+)} = 0$ Amplitude Higgs Mode: $M = 2\Delta$

First Reported Observations of Higgs Bosons in BCS Condensates

Observation of a New Sound-Attenuation Peak in Superfluid ³He-B R. W. Giannetta, (a) A. Ahonen, (b) E. Polturak, J. Saunders, E. K. Zeise, R. C. Richardson, and D. M. Lee Laboratory of Atomic and Solid State Physics and Materials Science Center, Cornell University, Ithaca, New York 14853 (Received 25 March 1980) Results of zero-sound attenuation measurements in ³He-B, at frequencies up to 60 MHz and pressures between 0 and 20 bars, are reported. At frequencies of 30 MHz and above, a new attenuation feature is observed which bears the signature of a collective mode of the superfluid. VOLUME 45, NUMBER 4 PHYSICAL REVIEW LETTERS 28 JULY 1980 Measurements of High-Frequency Sound Propagation in ³He-B D. B. Mast, Bimal K. Sarma, J. R. Owers-Bradley, I. D. Calder, J. B. Ketterson, and W. P. Halperin Department of Physics and Astronomy and Materials Research Center, Northwestern University, Evanston, Illinois 60201 (Received 10 April 1980) Measurements of the attenuation and velocity of pulsed high-frequency sound have been performed up to 133 MHz in superfluid ³He-B. A new collective mode of the order parameter was discovered at a frequency extrapolated to T. of $\omega = (1.165 \pm 0.05) \Delta_{met}(T_{c})$. where $\Delta_{H^{rs}}(T)$ is the energy gap in the weak-coupling BCS theory. The group velocity has been observed to decrease by as much as a of the zero-sound velocity, VOLUME 45, NUMBER 8 PHYSICAL REVIEW LETTERS 25 August 1980 Raman Scattering by Superconducting-Gap Excitations and Their Coupling to Charge-Density Waves R. Sooryakumar and M. V. Klein Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Uybana, Illinois 61801 (Received 24 March 1980) 2H-NbSe, undergoes a charge-density-wave (CDW) distortion at 33 K which induces

And E Raman-active phono modes. These are joined in the superconducting state at 2 K by new A and E Raman modes close in energy to the BCS gap 2A. Magnetic fields suppress the intensity of the new modes and enhance that of the CDW-induced modes, thus providing evidence of coupling between the superconducting-gap excitations and the CDW.

Higgs Mode with mass: M = 3 meV and spin J = 0 in NbSe₂

Raman Absorption in NbSe₂

 $\blacktriangleright \hbar \omega_{\gamma_1} = \hbar \omega_{\gamma_2} + 2\Delta$ Amplitude Higgs - CDW Phonon Coupling Theory: P. Littlewood & C. Varma, PRL 47, 811 (1981) 80

Lagrangian Field Theory for Bosonic Excitations of Superfluid ³He-B

³He-B:
$$B_{\alpha i} = \frac{1}{\sqrt{3}} \Delta \delta_{\alpha i}$$
 $L = 1$, $S = 1 \rightsquigarrow J = 0$

Symmetry of ³He-B:
$$H = SO(3)_J \times T$$

Fluctuations:
$$\mathcal{D}_{\alpha i}(\mathbf{r},t) = A_{\alpha i}(\mathbf{r},t) - B_{\alpha i} = \sum_{J,m} D_{J,m}(\mathbf{r},t) t_{\alpha i}^{(J,m)}$$

Lagrangian:

$$\mathcal{L} = \int d^3 r \left\{ \tau \operatorname{Tr} \left\{ \dot{\mathcal{D}} \dot{\mathcal{D}}^{\dagger} \right\} - \alpha \operatorname{Tr} \left\{ \mathcal{D} \mathcal{D}^{\dagger} \right\} - \sum_{p=1}^5 \beta_p \, u_p(\mathcal{D}) - \sum_{l=1}^3 \, K_l \, v_l(\partial \mathcal{D}) \right\}$$

$$\partial_t^2 D_{J,m}^{(C)} + E_{J,m}^{(C)}(\mathbf{q})^2 D_{J,m}^{(C)} = \frac{1}{\tau} \eta_{J,m}^{(C)}$$

with
$$J = \{0, 1, 2\}, m = -J \ldots + J, C = \pm 1$$

▶ Time-Dependent Ginzburg-Landau Theory for Superfluid ³ He-B: JAS & T. Mizushima, arXiv:1611.07273 (2016)

Spectrum of Bosonic Modes of Superfluid 3 He-B : Condensate is $J^{C} = 0^{+}$

► 4 Nambu-Goldstone Modes & 14 Higgs modes $E_{J,m}^{(C)}(\mathbf{q}) = \sqrt{M_{J,C}^2 + \left(c_{J,|m|}^{(C)}|\mathbf{q}|\right)^2}$

Mode	Symmetry	Mass	Name
$D_{0,m}^{(+)}$	J = 0, C = +1	2Δ	Amplitude Higgs
$D_{0,m}^{(-)}$	$J=0$, $\mathbf{C}=-1$	0	NG Phase Mode
$D_{1,m}^{(+)}$	J = 1, C = +1	0	NG Spin-Orbit Modes
$D_{1,m}^{(-)}$	J = 1, C = -1	2Δ	AH Spin-Orbit Modes
$D_{2,m}^{(+)}$	J = 2, C = +1	$\sqrt{\frac{8}{5}}\Delta$	2^+ AH Modes
$D_{2,m}^{(-)}$	J = 2, C = -1	$\sqrt{\frac{12}{5}}\Delta$	2^- AH Modes

▶ Vdovin, Maki, Wölfle, Serene, Nagai, Volovik, Schopohl, McKenzie, JAS ...

Collective Mode Spectrum for ³He-B

Higgs Mode with mass: M = 500 neV and spin J = 2 at LASSP-Cornell

R. Giannetta et al., PRL 45, 262 (1980)

Higgs Mode with mass: M = 500 neV and spin $J^{c} = 2^{+}$ at ULT-Northwestern

D. Mast et al. Phys. Rev. Lett. 45, 266 (1980).

Superfluid ³He Higgs Detector at ULT-Northwestern

 $^{3}\text{He-}^{4}\text{He}$ Dilution + Adiabatic Demagnetization Stages \rightsquigarrow $T_{\min}\approx200\mu\text{K}$

 $J = 2^-$, $m = \pm 1$ Higgs Modes Transport Mass and Spin Transverse Waves in Superfluid ³He-B", G. Moores and JAS, JLTP 91, 13 (1993)

$$C_{t}(\omega) = \sqrt{\frac{F_{1}^{s}}{15}} v_{f} \left[\rho_{n}(\omega) + \frac{2}{5} \rho_{s}(\omega) \left\{ \underbrace{\frac{\omega^{2}}{(\omega + i\Gamma)^{2} - \frac{12}{5}\Delta^{2} - \frac{2}{5}(q^{2}v_{f}^{2})}_{D_{2,\pm 1}^{(-)}} \right\} \right]^{\frac{1}{2}}$$

Transverse Zero Sound Propagation in Superfluid ³He-B: Cavity Oscillations of TZS

Faraday Rotation: Magneto-Acoustic Birefringence of Transverse Currents

▶ "Magneto-Acoustic Rotation of Transverse Waves in ³He-B", J. A. Sauls et al., Physica B, 284,267 (2000)

$$C_{\text{RCP}}(\omega) = v_f \left[\frac{F_1^s}{15} \rho_n(\omega) + \frac{2F_1^s}{75} \rho_s(\omega) \left\{ \frac{\omega^2}{(\omega + i\Gamma)^2 - \Omega_{2,\pm}^{(-)}(\mathbf{q})} \right\} \right]^{\frac{1}{2}}$$

$$D_{2,\pm1}^{(-)}$$

$$D_{2,\pm1}^{(-)}$$

$$\int_{2,\pm1}^{(-)} \Delta \pm g_{2^-} \gamma H_{\text{eff}}$$

$$\int_{12}^{12} \Delta = g \gamma H_{\text{eff}} \ll \Delta$$

► Circular Birefringence $\implies C_{\text{RCP}} \neq C_{\text{LCP}} \implies$ Faraday Rotation $\left(\frac{C_{\text{RCP}} - C_{\text{LCP}}}{C_t}\right) \simeq g_{2^-} \left(\frac{\gamma H_{\text{eff}}}{\omega}\right)$

► Faraday Rotation Period
$$(\gamma H_{\text{eff}} \ll (\omega - \Omega_2^{(-)}))$$
:
 $\lambda_H \simeq \frac{4\pi C_t}{g_2 - \gamma H} \simeq \frac{500 \, \mu m}{900}, \quad H = 200 \, G_{\text{c}}$

S

Discovery of the acoustic Faraday effect in superfluid ³ He-B, Y. Lee, et al. Nature 400, 431 (1999)

Large Faraday Rotations vs. ``Blue Tuning'' B = 1097 G 810 ° 630 ° 270 ° 1170° 1.13 990 ° (2n + 1) x 90 ° 1.12 Acoustic Response (µV) .11 450° 90° 1.10 1.09 1.08 1.07 0.05 0.10 0.15 0.25 0.30 0.35 0.00 0.20 $(\omega^2 - \Omega^2)/\omega^2$

C. Collett et al., Phys. Rev. B 87, 024502 (2013)

Higgs Boson with mass M = 125 GeV - Is this all there is?

 Higgs Bosons in Particle Physics and in Condensed Matter G.E. Volovik & M. Zubkov, PRD 87, 075016 (2013)

▶ GEV & MZ: $m_{top} \approx 175 \text{ GeV}$, $M_{H,-} = 125 \text{ GeV}$, \therefore NSR $\rightsquigarrow M_{H,+} \approx 270 \text{ GeV}$

 Boson-Fermion Relations in BCS type Theories Y. Nambu, Physica D, 15, 147 (1985)

▶ Broken Symmetry State: \rightsquigarrow Fermion mass: $m_{\rm F} = \Delta$

Nambu's Sum Rule ("empirical observation"):

$$\sum_{C} M_{J,C}^{2} = (2m_{\rm F})^{2}$$

Mode	Symmetry	Mass	Name
$D_{0,m}^{(+)}$	$J=0, \ \mathbf{C}=+1$	2Δ	Amplitude Higgs
$D_{0,m}^{(-)}$	J = 0, C = -1	0	NG Phase Mode
$D_{1,m}^{(+)}$	$J=1, \ {\tt C}=+1$	0	NG Spin-Orbit Modes
$D_{1,m}^{(-)}$	$J=1$, $\mathbf{C}=-1$	2Δ	AH Spin-Orbit Modes
$D_{2,m}^{(+)}$	J=2, C=+1	$\sqrt{\frac{8}{5}}\Delta$	2^+ AH Modes
$D_{2,m}^{(-)}$	$J=2$, $\mathbf{C}=-1$	$\sqrt{\frac{12}{5}}\Delta$	2^- AH Modes

Corrections to the masses of the $J^{c} = 2^{\pm}$ Higgs in ³He-B

▶ Weak-Coupling BCS Pairing Theory ~→

$$M_{2,+} = \sqrt{\frac{J}{2J+1}} \Delta = \sqrt{\frac{8}{5}} \Delta \quad \& \quad M_{2,-} = \sqrt{\frac{J+1}{2J+1}} \Delta = \sqrt{\frac{12}{5}} \Delta$$
$$\therefore \sum_{C} M_{J,C}^{2} = (2m_{\rm F})^{2}$$

Interactions & Polarization of the Fermionic Vacuum

▶ Corrections to Higgs masses with $J^{c} \neq 0^{+}$ (Symmetry of the Vacuum State)

► Violation of Nambu's Sum Rule: $\sum_{C} M_{2,C}^{2} \neq (2m_{\rm F})^{2}$ $\Delta_{\alpha\beta}(p) = +p \alpha - p \beta$

$$\Sigma_{\alpha\beta}(p) = p \alpha - \Delta - p \beta + p \alpha - p \beta .$$
 (1)

[▶] Nambu's Fermion-Boson Mass Relations, JAS and T. Mizushima, for Phys. Rev. B 2016.

Vacuum polarization corrections to the masses of the $J^{c} = 2^{\pm}$ Higgs in ³He-B

F₂^{s,a}: ℓ = 2 particle-hole interactions (scalar and spin exchange)
 x₃⁻¹: f-wave, S = 1 pairing (particle-particle) channel

Violation of the Nambu Sum Rule from Polarization of the Condensate in ³He-B

TDGL satisfies the NSR (Fermionic degrees of freedom "frozen")

p-p and p-h Interactions plus vacuum polarization ~> violations of the NSR

Mass shift of the $J^{c} = 2^{+}$ Higgs Mode in ${}^{3}\text{He-B}$

Measurements: D. Mast et al. PRL 45, 266 (1980)

• exchange p-h channel: $F_2^a = -0.88$ (from Magnetic susceptibility of ³He-B)

▶ attractive f-wave interaction in the pp-channel \rightarrow New physics at $M \approx 2\Delta!$

The Helium Paradigm: Superfluid Phases of ³He

Symmetry of Normal Liquid 3 He: $G = SO(3)_{S} \times SO(3)_{L} \times U(1)_{N} \times P \times T$

Spin-Triplet, P-wave Order Parameter

$$\begin{pmatrix} \Psi_{\uparrow\uparrow} & \Psi_{\uparrow\downarrow} \\ \Psi_{\uparrow\downarrow} & \Psi_{\downarrow\downarrow} \end{pmatrix} = \begin{pmatrix} -\mathbf{d}_x + i\mathbf{d}_y & \mathbf{d}_z \\ \mathbf{d}_z & \mathbf{d}_x + i\mathbf{d}_y \end{pmatrix}$$

Signatures of Broken T and P Symmetry in ³He-A

What is the Signature & Evidence for Chirality of Superfluid ³He-A?
Spontaneous Symmetry Breaking → Emergent Topology of ³He-A
Chirality + Topology → Edge States & Chiral Edge Currents
Broken T and P → Anomalous Hall Effect for electrons in ³He-A

Real-Space vs. Momentum-Space Topology

Topology in Real Space $\Psi(\mathbf{r}) = |\Psi(r)| \, e^{i \vartheta(\mathbf{r})}$

Phase Winding

$$N_C = \frac{1}{2\pi} \oint_C d\mathbf{l} \cdot \frac{1}{|\Psi|} \mathsf{Im}[\nabla \Psi] \in \{0, \pm 1, \pm 2, \dots$$

 Massless Fermions confined in the Vortex Core

Chiral Symmetry \rightsquigarrow Topology in Momentum Space $\Psi(\mathbf{p}) = \Delta(p_x \pm ip_y) \sim e^{\pm i\varphi_{\mathbf{p}}}$

Topological Quantum Number: $L_z = \pm 1$

$$N_{\rm 2D} = \frac{1}{2\pi} \oint d\mathbf{p} \cdot \frac{1}{|\Psi(\mathbf{p})|} \mathrm{Im}[\boldsymbol{\nabla}_{\mathbf{p}} \Psi(\mathbf{p})] = L_z$$

- Massless Chiral Fermions
 - Nodal Fermions in 3D
 - Edge Fermions in 2D

Confinement: Superfluid Phases of ³He in Thin Films

Symmetry or Normal Liquid ³He: $G = SO(3)_S \times SO(2)_L \times U(1)_N \times P \times T$

Chiral Edge Current Circulating a Hole or Defect in a Chiral Superfluid

Unbounded Film of ³He-A perforated by a Hole

 \triangleright $R \gg \xi_0 \approx 100 \,\mathrm{nm}$

- Magnitude of the Sheet Current: $\frac{1}{4}n\hbar$ $(n = N/V = {}^{3}$ He density)
- Edge Current *Counter*-Circulates: $J = -\frac{1}{4}n\hbar$ w.r.t. Chirality: $\hat{\mathbf{l}} = +\mathbf{z}$
- Angular Momentum: $L_z = 2\pi h R^2 \times (-\frac{1}{4} n \hbar) = -(N_{\text{hole}}/2) \hbar$

 $N_{\mathsf{hole}} = \mathsf{Number} \text{ of } {}^{3}\mathsf{He} \text{ atoms excluded from the Hole}$

: An object in ³He-A *inherits* angular momentum from the Condensate of Chiral Pairs!

Electron bubbles in chiral superfluid ³He-A

$$\Delta_{\mathcal{A}}(\hat{\mathbf{k}}) = \Delta \frac{k_x + ik_y}{k_f} = \Delta e^{i\phi_{\mathbf{k}}}$$

• Electric current: $\mathbf{v} = \widetilde{\mu_{\perp}} \widetilde{\mathcal{E}} + \mu_{AH} \mathcal{E} \times \hat{\mathbf{l}}$ sa

Salmelin et al. PRL 63, 868 (1989)

Hall ratio:
$$\tan \alpha = v_{AH}/v_{\mathcal{E}} = |\mu_{AH}/\mu_{\perp}|$$

Mobility of Electron Bubbles in ³He-A

H. Ikegami et al., Science 341, 59 (2013); JPSJ 82, 124607 (2013); JPSJ 84, 044602 (2015)

Electric current: $\mathbf{v} = \overbrace{\mu_{\perp} \mathcal{E}}^{\mathbf{v}_{\mathcal{E}}} + \overbrace{\mu_{\mathsf{AH}} \mathcal{E} \times \hat{\mathbf{l}}}^{\mathbf{v}_{\mathsf{AH}}}$ Hall ratio: $\tan \alpha = v_{\mathsf{AH}}/v_{\mathcal{E}} = |\mu_{\mathsf{AH}}/\mu_{\perp}|$

Forces on the Electron bubble in ³He-A:

(i)
$$M \frac{d\mathbf{v}}{dt} = e\boldsymbol{\mathcal{E}} + \mathbf{F}_{\mathrm{QP}}, \quad \mathbf{F}_{QP} - \text{force from quasiparticle collisions}$$

(ii) $\mathbf{F}_{QP} = -\stackrel{\leftrightarrow}{\eta} \cdot \mathbf{v}, \quad \stackrel{\leftrightarrow}{\eta} - \text{generalized Stokes tensor}$
(iii) $\stackrel{\leftrightarrow}{\eta} = \begin{pmatrix} \eta_{\perp} & \eta_{\mathsf{AH}} & 0\\ -\eta_{\mathsf{AH}} & \eta_{\perp} & 0\\ 0 & 0 & \eta_{\parallel} \end{pmatrix}$ for chiral symmetry with $\hat{\mathbf{l}} \parallel \mathbf{e}_z$

(iv)
$$M \frac{d\mathbf{v}}{dt} = e\mathbf{\mathcal{E}} - \eta_{\perp}\mathbf{v} + \frac{e}{c}\mathbf{v} \times \mathbf{B}_{\text{eff}}, \text{ for } \mathbf{\mathcal{E}} \perp \hat{\mathbf{l}}$$

(v)
$$\mathbf{B}_{\text{eff}} = -\frac{e}{e} \eta_{\text{AH}} \mathbf{l} \quad B_{\text{eff}} \simeq 10^3 - 10^4 \text{ T} \quad !!!$$

(vi)
$$\frac{d\mathbf{v}}{dt} = 0 \quad \rightsquigarrow \quad \mathbf{v} = \stackrel{\leftrightarrow}{\mu} \mathcal{E}$$
, where $\stackrel{\leftrightarrow}{\mu} = e \stackrel{\leftrightarrow}{\eta}^{-1}$

$$\mu_{\parallel} = \frac{e}{\eta_{\parallel}} \ , \ \ \mu_{\perp} = e \, \frac{\eta_{\perp}}{\eta_{\perp}^2 + \eta_{\rm AH}^2}, \quad \mu_{\rm AH} = -e \, \frac{\eta_{\rm AH}}{\eta_{\perp}^2 + \eta_{\rm AH}^2}$$

O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

Mirror-antisymmetric scattering \Rightarrow transverse force $\mathbf{F}_{i} = \overset{\leftrightarrow}{\mathbf{T}} \mathbf{u}_{i} \mathbf{u}_{i} = \pi \mathbf{n}_{i} \int_{-\infty}^{\infty} dF \left(-2^{\frac{\partial f}{\partial f}} \right) \mathbf{r}_{i} (F)$

$$\mathbf{F}_{\mathsf{QP}} = -\overleftrightarrow{\eta} \cdot \mathbf{v}, \quad \eta_{ij} = n_3 p_f \int_0^{\infty} dE \left(-2\frac{\partial f}{\partial E}\right) \sigma_{ij}(E)$$

Subdivide by mirror symmetry:
$$\begin{split} W(\hat{\mathbf{k}}', \hat{\mathbf{k}}) &= W^{(+)}(\hat{\mathbf{k}}', \hat{\mathbf{k}}) + \frac{W^{(-)}(\hat{\mathbf{k}}', \hat{\mathbf{k}})}{W^{(-)}(\hat{\mathbf{k}}', \hat{\mathbf{k}})}, \\ \sigma_{ij}(E) &= \sigma_{ij}^{(+)}(E) + \frac{\sigma_{ij}^{(-)}(E)}{\sigma_{ij}}, \end{split}$$

$$\sigma_{ij}^{(-)}(E) = \frac{3}{4} \int_{E \ge |\Delta(\hat{\mathbf{k}}')|} d\Omega_{\mathbf{k}'} \int_{E \ge |\Delta(\hat{\mathbf{k}})|} \frac{d\Omega_{\mathbf{k}}}{4\pi} \left[\epsilon_{ijk} (\hat{\mathbf{k}}' \times \hat{\mathbf{k}})_k \right] \frac{d\sigma^{(-)}}{d\Omega_{\mathbf{k}'}} (\hat{\mathbf{k}}', \hat{\mathbf{k}}; E) \left[f(E) - \frac{1}{2} \right]$$

Mirror-antisymmetric cross section:

$$W^{(-)}(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = [W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) - W(\hat{\mathbf{k}},\hat{\mathbf{k}}')]/2$$

$$\frac{d\sigma^{(-)}}{d\Omega_{\mathbf{k}'}}(\hat{\mathbf{k}}',\hat{\mathbf{k}};E) = \left(\frac{m^*}{2\pi\hbar^2}\right)^2 \frac{E}{\sqrt{E^2 - |\Delta(\hat{\mathbf{k}}')|^2}} W^{(-)}(\hat{\mathbf{k}}',\hat{\mathbf{k}}) \frac{E}{\sqrt{E^2 - |\Delta(\hat{\mathbf{k}})|^2}}$$

Transverse force $\eta_{xy}^{(-)} = -\eta_{yx}^{(-)} \equiv \eta_{AH} \Rightarrow$ anomalous Hall effect

O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

Differential cross section for Bogoliubov QP-Ion Scattering

O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

Current density bound to an electron bubble ($k_f R = 11.17$)

O Shevtsov and IAS Phys Rev B 96 064511 (2016).

Theoretical and Experimental Comparison for the Electron Mobility in ³He-A

O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

Summary

- ► Electrons in ³He-A are "dressed" by a spectrum of Weyl Fermions
- ▶ Electrons in ³He-A are "Left handed" in a Right-handed Chiral Vacuum $\rightsquigarrow L_z \approx -(N_{bubble}/2)\hbar \approx -100 \hbar$
- Experiment: RIKEN mobility experiments \rightsquigarrow Observation an AHE in 3 He-A
- Scattering of Bogoliubov QPs by the dressed Ion → Drag Force (−η⊥v) and Transverse Force (^e/_cv × B_{eff}) on the Ion

• Anomalous Hall Field:
$$\mathbf{B}_{\text{eff}} \approx \frac{\Phi_0}{3\pi^2} k_f^2 \left(k_f R\right)^2 \left(\frac{\eta_{\text{AH}}}{\eta_{\text{N}}}\right) \mathbf{l} \simeq 10^3 - 10^4 \,\text{T}\,\mathbf{l}$$

- Mechanism: Skew/Andreev Scattering of Bogoliubov QPs by the dressed Ion
- Origin: Broken Mirror & Time-Reversal Symmetry $\rightsquigarrow W(\mathbf{k}, \mathbf{k}') \neq W(\mathbf{k}', \mathbf{k})$
- ► Theory: ~→ Quantitative account of RIKEN mobility experiments
- Ongoing: New directions for Novel Transport in ³He-A & Chiral Superconductors